Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(\frac{y-2}{y+2} = \frac{y-5}{y+1} + 1\)[/tex], follow these steps:
1. Start with the given equation:
[tex]\[ \frac{y-2}{y+2} = \frac{y-5}{y+1} + 1 \][/tex]
2. Combine the terms on the right side of the equation into a single fraction:
[tex]\[ \frac{y-2}{y+2} = \frac{y-5 + (y+1)}{y+1} \][/tex]
Simplify the numerator:
[tex]\[ y-5 + y+1 = 2y - 4 \][/tex]
So the equation now becomes:
[tex]\[ \frac{y-2}{y+2} = \frac{2y-4}{y+1} \][/tex]
3. Clear the fractions by cross-multiplying:
[tex]\[ (y-2)(y+1) = (2y-4)(y+2) \][/tex]
4. Expand both sides of the equation:
[tex]\[ y^2 - y - 2y - 2 = 2y^2 + 4y - 4y - 8 \][/tex]
Simplify each side:
[tex]\[ y^2 - y - 2 = 2y^2 - 8 \][/tex]
5. Move all terms to one side to set the equation to zero:
[tex]\[ y^2 - y - 2 - 2y^2 + 8 = 0 \][/tex]
Simplify:
[tex]\[ -y^2 - y + 6 = 0 \][/tex]
Multiply through by -1 to make calculation easier:
[tex]\[ y^2 + y - 6 = 0 \][/tex]
6. Factor the quadratic equation:
[tex]\[ y^2 + y - 6 = (y+3)(y-2) = 0 \][/tex]
7. Set each factor equal to zero to solve for [tex]\(y\)[/tex]:
[tex]\[ y+3 = 0 \quad \text{or} \quad y-2 = 0 \][/tex]
Solving these gives:
[tex]\[ y = -3 \quad \text{or} \quad y = 2 \][/tex]
Therefore, the solutions to the equation [tex]\(\frac{y-2}{y+2} = \frac{y-5}{y+1} + 1\)[/tex] are [tex]\(y = -3\)[/tex] and [tex]\(y = 2\)[/tex].
1. Start with the given equation:
[tex]\[ \frac{y-2}{y+2} = \frac{y-5}{y+1} + 1 \][/tex]
2. Combine the terms on the right side of the equation into a single fraction:
[tex]\[ \frac{y-2}{y+2} = \frac{y-5 + (y+1)}{y+1} \][/tex]
Simplify the numerator:
[tex]\[ y-5 + y+1 = 2y - 4 \][/tex]
So the equation now becomes:
[tex]\[ \frac{y-2}{y+2} = \frac{2y-4}{y+1} \][/tex]
3. Clear the fractions by cross-multiplying:
[tex]\[ (y-2)(y+1) = (2y-4)(y+2) \][/tex]
4. Expand both sides of the equation:
[tex]\[ y^2 - y - 2y - 2 = 2y^2 + 4y - 4y - 8 \][/tex]
Simplify each side:
[tex]\[ y^2 - y - 2 = 2y^2 - 8 \][/tex]
5. Move all terms to one side to set the equation to zero:
[tex]\[ y^2 - y - 2 - 2y^2 + 8 = 0 \][/tex]
Simplify:
[tex]\[ -y^2 - y + 6 = 0 \][/tex]
Multiply through by -1 to make calculation easier:
[tex]\[ y^2 + y - 6 = 0 \][/tex]
6. Factor the quadratic equation:
[tex]\[ y^2 + y - 6 = (y+3)(y-2) = 0 \][/tex]
7. Set each factor equal to zero to solve for [tex]\(y\)[/tex]:
[tex]\[ y+3 = 0 \quad \text{or} \quad y-2 = 0 \][/tex]
Solving these gives:
[tex]\[ y = -3 \quad \text{or} \quad y = 2 \][/tex]
Therefore, the solutions to the equation [tex]\(\frac{y-2}{y+2} = \frac{y-5}{y+1} + 1\)[/tex] are [tex]\(y = -3\)[/tex] and [tex]\(y = 2\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.