Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the mean and standard deviation of the sampling distribution of sample means given a population with a known mean and standard deviation, and a sample size, we can follow these steps:
1. Identify the Population Mean ([tex]\(\mu\)[/tex]) and Population Standard Deviation ([tex]\(\sigma\)[/tex]):
- Given population mean, [tex]\(\mu = 85\)[/tex]
- Given population standard deviation, [tex]\(\sigma = 27\)[/tex]
2. Determine the Sample Size ([tex]\(n\)[/tex]):
- Given sample size, [tex]\(n = 256\)[/tex]
3. Find the Mean of the Sampling Distribution of Sample Means ([tex]\(\mu_x\)[/tex]):
- The mean of the sampling distribution of sample means ([tex]\(\mu_x\)[/tex]) is the same as the population mean ([tex]\(\mu\)[/tex]).
- Therefore, [tex]\(\mu_x = 85\)[/tex]
4. Calculate the Standard Deviation of the Sampling Distribution of Sample Means ([tex]\(\sigma_x\)[/tex]):
- The standard deviation of the sampling distribution of sample means is calculated by dividing the population standard deviation by the square root of the sample size:
[tex]\[ \sigma_x = \frac{\sigma}{\sqrt{n}} \][/tex]
- Substituting the given values:
[tex]\[ \sigma_x = \frac{27}{\sqrt{256}} \][/tex]
- Simplify the square root in the denominator:
[tex]\[ \sqrt{256} = 16 \][/tex]
- Hence:
[tex]\[ \sigma_x = \frac{27}{16} = 1.6875 \][/tex]
Therefore, the mean ([tex]\(\mu_{ x }\)[/tex]) of the sampling distribution of sample means is [tex]\(85\)[/tex] and the standard deviation ([tex]\(\sigma_{ x }\)[/tex]) is [tex]\(1.6875\)[/tex].
Answer:
[tex]\(\mu_{ x } = 85 \\ \sigma_{ x } = 1.6875\)[/tex]
1. Identify the Population Mean ([tex]\(\mu\)[/tex]) and Population Standard Deviation ([tex]\(\sigma\)[/tex]):
- Given population mean, [tex]\(\mu = 85\)[/tex]
- Given population standard deviation, [tex]\(\sigma = 27\)[/tex]
2. Determine the Sample Size ([tex]\(n\)[/tex]):
- Given sample size, [tex]\(n = 256\)[/tex]
3. Find the Mean of the Sampling Distribution of Sample Means ([tex]\(\mu_x\)[/tex]):
- The mean of the sampling distribution of sample means ([tex]\(\mu_x\)[/tex]) is the same as the population mean ([tex]\(\mu\)[/tex]).
- Therefore, [tex]\(\mu_x = 85\)[/tex]
4. Calculate the Standard Deviation of the Sampling Distribution of Sample Means ([tex]\(\sigma_x\)[/tex]):
- The standard deviation of the sampling distribution of sample means is calculated by dividing the population standard deviation by the square root of the sample size:
[tex]\[ \sigma_x = \frac{\sigma}{\sqrt{n}} \][/tex]
- Substituting the given values:
[tex]\[ \sigma_x = \frac{27}{\sqrt{256}} \][/tex]
- Simplify the square root in the denominator:
[tex]\[ \sqrt{256} = 16 \][/tex]
- Hence:
[tex]\[ \sigma_x = \frac{27}{16} = 1.6875 \][/tex]
Therefore, the mean ([tex]\(\mu_{ x }\)[/tex]) of the sampling distribution of sample means is [tex]\(85\)[/tex] and the standard deviation ([tex]\(\sigma_{ x }\)[/tex]) is [tex]\(1.6875\)[/tex].
Answer:
[tex]\(\mu_{ x } = 85 \\ \sigma_{ x } = 1.6875\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.