Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the slope of line segment [tex]\(DC\)[/tex], we need to examine the relationship between the coordinates of points D and C.
1. Identify Coordinates:
Assume points [tex]\(D\)[/tex] and [tex]\(C\)[/tex] lie on the cartesian plane with coordinates [tex]\(D(x_1, y_1)\)[/tex] and [tex]\(C(x_2, y_2)\)[/tex], respectively.
2. Formula for Slope:
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Given Slope:
We need to verify the slope of [tex]\(DC\)[/tex]. Given that the slope [tex]\(m\)[/tex] of [tex]\(DC\)[/tex] is [tex]\(-\frac{2}{5}\)[/tex], this means that:
[tex]\[ m = -\frac{2}{5} \][/tex]
4. Interpretation of Slope:
The slope of [tex]\(-\frac{2}{5}\)[/tex] suggests that for every 5 units of horizontal change (in the [tex]\(x\)[/tex]-direction), the vertical change (in the [tex]\(y\)[/tex]-direction) is [tex]\(-2\)[/tex] units. This means that the line segment [tex]\(DC\)[/tex] is decreasing as you move from left to right.
Therefore, the slope of line segment [tex]\(DC\)[/tex] is [tex]\(-0.4\)[/tex].
1. Identify Coordinates:
Assume points [tex]\(D\)[/tex] and [tex]\(C\)[/tex] lie on the cartesian plane with coordinates [tex]\(D(x_1, y_1)\)[/tex] and [tex]\(C(x_2, y_2)\)[/tex], respectively.
2. Formula for Slope:
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Given Slope:
We need to verify the slope of [tex]\(DC\)[/tex]. Given that the slope [tex]\(m\)[/tex] of [tex]\(DC\)[/tex] is [tex]\(-\frac{2}{5}\)[/tex], this means that:
[tex]\[ m = -\frac{2}{5} \][/tex]
4. Interpretation of Slope:
The slope of [tex]\(-\frac{2}{5}\)[/tex] suggests that for every 5 units of horizontal change (in the [tex]\(x\)[/tex]-direction), the vertical change (in the [tex]\(y\)[/tex]-direction) is [tex]\(-2\)[/tex] units. This means that the line segment [tex]\(DC\)[/tex] is decreasing as you move from left to right.
Therefore, the slope of line segment [tex]\(DC\)[/tex] is [tex]\(-0.4\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.