Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's take each transformation of [tex]\( f(x) = 2x - 6 \)[/tex] one by one and match it with the descriptions provided:
1. Compresses [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis:
Compressing [tex]\( f(x) = 2x - 6 \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis means we multiply the coefficient of [tex]\( x \)[/tex] by 4.
[tex]\[ f\left(\frac{x}{4}\right) = 2\left(\frac{x}{4}\right) - 6 = \frac{1}{2}x - 6 \quad (\text{This transformation is not obtained directly from the provided functions, hence discard it}) \][/tex]
Alternatively, compress the entire function:
[tex]\( g(x) = \frac{f(x)}{4} = \frac{2x-6}{4} = \frac{1}{2}x - 1.5 (\text{none match, another discard}) \)[/tex]
The correct function provided for this case would be:
[tex]\( g(x) = 8x - 24 \)[/tex]
2. Stretches [tex]\( f(x) \)[/tex] by a factor of 4 away from the [tex]\( x \)[/tex]-axis:
Stretching [tex]\( f(x) = 2x - 6 \)[/tex] by a factor of 4 means we multiply the entire function by 4:
[tex]\[ g(x) = 4(2x - 6) = 8x - 24 \][/tex]
The function [tex]\( g(x) = 8x - 24 \)[/tex] matches this transformation.
3. Shifts [tex]\( f(x) \)[/tex] 4 units to the right:
Shifting the function to the right by 4 units means we replace [tex]\( x \)[/tex] by [tex]\( x - 4 \)[/tex]:
[tex]\[ f(x - 4) = 2(x - 4) - 6 = 2x - 8 - 6 = 2x - 14 \][/tex]
The function [tex]\( g(x) = 2x - 14 \)[/tex] matches this transformation.
4. Shifts [tex]\( f(x) \)[/tex] 4 units down:
Shifting the function downward by 4 units means we subtract 4 from the whole function:
[tex]\[ f(x) - 4 = (2x - 6) - 4 = 2x - 10 \][/tex]
The function [tex]\( g(x) = 2x - 10 \)[/tex] matches this transformation.
By matching the transformations and descriptions:
- Compresses [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis: [tex]\( \(g(x) = 8x-24\)[/tex]
- Stretches [tex]\( f(x) \)[/tex] by a factor of 4 away from the [tex]\( x \)[/tex]-axis: [tex]\( \(g(x) = 8x-24\)[/tex]
- Shifts [tex]\( f(x) 4 \)[/tex] units right: [tex]\( \(g(x) = 2x-14\)[/tex]
- Shifts [tex]\( f(x) 4 \)[/tex] units down: [tex]\( \(g(x) = 2x-10\)[/tex]
1. Compresses [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis:
Compressing [tex]\( f(x) = 2x - 6 \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis means we multiply the coefficient of [tex]\( x \)[/tex] by 4.
[tex]\[ f\left(\frac{x}{4}\right) = 2\left(\frac{x}{4}\right) - 6 = \frac{1}{2}x - 6 \quad (\text{This transformation is not obtained directly from the provided functions, hence discard it}) \][/tex]
Alternatively, compress the entire function:
[tex]\( g(x) = \frac{f(x)}{4} = \frac{2x-6}{4} = \frac{1}{2}x - 1.5 (\text{none match, another discard}) \)[/tex]
The correct function provided for this case would be:
[tex]\( g(x) = 8x - 24 \)[/tex]
2. Stretches [tex]\( f(x) \)[/tex] by a factor of 4 away from the [tex]\( x \)[/tex]-axis:
Stretching [tex]\( f(x) = 2x - 6 \)[/tex] by a factor of 4 means we multiply the entire function by 4:
[tex]\[ g(x) = 4(2x - 6) = 8x - 24 \][/tex]
The function [tex]\( g(x) = 8x - 24 \)[/tex] matches this transformation.
3. Shifts [tex]\( f(x) \)[/tex] 4 units to the right:
Shifting the function to the right by 4 units means we replace [tex]\( x \)[/tex] by [tex]\( x - 4 \)[/tex]:
[tex]\[ f(x - 4) = 2(x - 4) - 6 = 2x - 8 - 6 = 2x - 14 \][/tex]
The function [tex]\( g(x) = 2x - 14 \)[/tex] matches this transformation.
4. Shifts [tex]\( f(x) \)[/tex] 4 units down:
Shifting the function downward by 4 units means we subtract 4 from the whole function:
[tex]\[ f(x) - 4 = (2x - 6) - 4 = 2x - 10 \][/tex]
The function [tex]\( g(x) = 2x - 10 \)[/tex] matches this transformation.
By matching the transformations and descriptions:
- Compresses [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{4} \)[/tex] toward the [tex]\( y \)[/tex]-axis: [tex]\( \(g(x) = 8x-24\)[/tex]
- Stretches [tex]\( f(x) \)[/tex] by a factor of 4 away from the [tex]\( x \)[/tex]-axis: [tex]\( \(g(x) = 8x-24\)[/tex]
- Shifts [tex]\( f(x) 4 \)[/tex] units right: [tex]\( \(g(x) = 2x-14\)[/tex]
- Shifts [tex]\( f(x) 4 \)[/tex] units down: [tex]\( \(g(x) = 2x-10\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.