Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \frac{-4}{x} + 1 \)[/tex], we need to identify all values of [tex]\( x \)[/tex] for which the function [tex]\( f(x) \)[/tex] is defined.
### Step-by-Step Solution:
1. Identify Points Where the Function is Undefined:
The function [tex]\(\frac{-4}{x} + 1\)[/tex] will be undefined wherever the denominator [tex]\( x \)[/tex] is zero since division by zero is undefined.
Setting the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
Therefore, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 0 \)[/tex].
2. Determine the Domain:
The domain of [tex]\( f(x) \)[/tex] includes all real numbers except those for which the function is undefined.
Since the function is undefined at [tex]\( x = 0 \)[/tex], we need to exclude this point from the real number line.
As a result, the domain of the function is all real numbers excluding [tex]\( x = 0 \)[/tex]. In interval notation, this is written as:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
3. Verify the Domain:
We can summarize the domain by saying that [tex]\( x \)[/tex] can take any real number value except [tex]\( x = 0 \)[/tex], confirming our previously written interval notation.
### Conclusion:
By analyzing the points of undefinedness and constructing the correct intervals, we conclude that the domain of [tex]\( f(x) = \frac{-4}{x} + 1 \)[/tex] is:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
### Correct Answer:
The correct answer is:
[tex]\[ \boxed{D. \, (-\infty, 0) \cup (0, \infty)} \][/tex]
### Step-by-Step Solution:
1. Identify Points Where the Function is Undefined:
The function [tex]\(\frac{-4}{x} + 1\)[/tex] will be undefined wherever the denominator [tex]\( x \)[/tex] is zero since division by zero is undefined.
Setting the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
Therefore, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 0 \)[/tex].
2. Determine the Domain:
The domain of [tex]\( f(x) \)[/tex] includes all real numbers except those for which the function is undefined.
Since the function is undefined at [tex]\( x = 0 \)[/tex], we need to exclude this point from the real number line.
As a result, the domain of the function is all real numbers excluding [tex]\( x = 0 \)[/tex]. In interval notation, this is written as:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
3. Verify the Domain:
We can summarize the domain by saying that [tex]\( x \)[/tex] can take any real number value except [tex]\( x = 0 \)[/tex], confirming our previously written interval notation.
### Conclusion:
By analyzing the points of undefinedness and constructing the correct intervals, we conclude that the domain of [tex]\( f(x) = \frac{-4}{x} + 1 \)[/tex] is:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
### Correct Answer:
The correct answer is:
[tex]\[ \boxed{D. \, (-\infty, 0) \cup (0, \infty)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.