Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which set of three angles could represent the interior angles of a triangle?

A. [tex]\( 26^{\circ}, 51^{\circ}, 103^{\circ} \)[/tex]
B. [tex]\( 29^{\circ}, 54^{\circ}, 107^{\circ} \)[/tex]
C. [tex]\( 35^{\circ}, 35^{\circ}, 20^{\circ} \)[/tex]
D. [tex]\( 10^{\circ}, 90^{\circ}, 90^{\circ} \)[/tex]


Sagot :

To determine which set of three angles can represent the interior angles of a triangle, we need to know that the sum of the interior angles of any triangle must be [tex]\(180^\circ\)[/tex]. We will calculate the sum for each set of angles provided and check which one sums to [tex]\(180^\circ\)[/tex].

First set of angles: [tex]\(26^\circ\)[/tex], [tex]\(51^\circ\)[/tex], [tex]\(103^\circ\)[/tex]
[tex]\[ 26^\circ + 51^\circ + 103^\circ = 180^\circ \][/tex]
This set sums to [tex]\(180^\circ\)[/tex], so it could represent the interior angles of a triangle.

Second set of angles: [tex]\(29^\circ\)[/tex], [tex]\(54^\circ\)[/tex], [tex]\(107^\circ\)[/tex]
[tex]\[ 29^\circ + 54^\circ + 107^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Third set of angles: [tex]\(35^\circ\)[/tex], [tex]\(35^\circ\)[/tex], [tex]\(20^\circ\)[/tex]
[tex]\[ 35^\circ + 35^\circ + 20^\circ = 90^\circ \][/tex]
This set sums to [tex]\(90^\circ\)[/tex], which is less than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Fourth set of angles: [tex]\(10^\circ\)[/tex], [tex]\(90^\circ\)[/tex], [tex]\(90^\circ\)[/tex]
[tex]\[ 10^\circ + 90^\circ + 90^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Since only the first set of angles sums to [tex]\(180^\circ\)[/tex], the set of angles that could represent the interior angles of a triangle is:
[tex]\[ 26^\circ, 51^\circ, 103^\circ \][/tex]