Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which portfolio has a higher total weighted mean amount of money and by how much, we need to follow these steps:
1. Calculate the Weighted Mean Rate of Return (ROR) for each portfolio:
The weighted mean ROR takes into account the proportion of each investment within the total portfolio and applies the respective ROR.
For Portfolio 1:
[tex]\[ \text{Weighted Mean ROR}_1 = \left( \frac{2300 \times 2.35\% + 3100 \times 1.96\% + 650 \times 10.45\% + 1800 \times (-2.59\%)}{2300 + 3100 + 650 + 1800} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_1 = 0.017339490445859872 \text{ or } 1.7339\% \][/tex]
For Portfolio 2:
[tex]\[ \text{Weighted Mean ROR}_2 = \left( \frac{1575 \times 2.35\% + 2100 \times 1.96\% + 795 \times 10.45\% + 1900 \times (-2.59\%)}{1575 + 2100 + 795 + 1900} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_2 = 0.017588697017268444 \text{ or } 1.7589\% \][/tex]
2. Calculate the total weighted mean amount of money for each portfolio:
To get the total weighted mean amount of money, multiply the total value of each portfolio by its respective weighted mean ROR.
For Portfolio 1:
[tex]\[ \text{Total Value}_1 = 2300 + 3100 + 650 + 1800 = 7850 \][/tex]
[tex]\[ \text{Total Weighted Amount}_1 = 7850 \times 0.017339490445859872 = 136.115 \][/tex]
For Portfolio 2:
[tex]\[ \text{Total Value}_2 = 1575 + 2100 + 795 + 1900 = 6370 \][/tex]
[tex]\[ \text{Total Weighted Amount}_2 = 6370 \times 0.017588697017268444 = 112.040 \][/tex]
3. Determine which portfolio has the higher total weighted mean amount of money and by how much:
Comparing the total weighted amounts:
[tex]\[ \text{Portfolio 1: } 136.115 \][/tex]
[tex]\[ \text{Portfolio 2: } 112.040 \][/tex]
Since 136.115 is greater than 112.040, Portfolio 1 has the higher total weighted mean amount of money. The difference between the weighted amounts of the two portfolios is:
[tex]\[ 136.115 - 112.040 = 24.075 \][/tex]
Thus, Portfolio 1 has the higher total weighted mean amount of money by \$24.08.
1. Calculate the Weighted Mean Rate of Return (ROR) for each portfolio:
The weighted mean ROR takes into account the proportion of each investment within the total portfolio and applies the respective ROR.
For Portfolio 1:
[tex]\[ \text{Weighted Mean ROR}_1 = \left( \frac{2300 \times 2.35\% + 3100 \times 1.96\% + 650 \times 10.45\% + 1800 \times (-2.59\%)}{2300 + 3100 + 650 + 1800} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_1 = 0.017339490445859872 \text{ or } 1.7339\% \][/tex]
For Portfolio 2:
[tex]\[ \text{Weighted Mean ROR}_2 = \left( \frac{1575 \times 2.35\% + 2100 \times 1.96\% + 795 \times 10.45\% + 1900 \times (-2.59\%)}{1575 + 2100 + 795 + 1900} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_2 = 0.017588697017268444 \text{ or } 1.7589\% \][/tex]
2. Calculate the total weighted mean amount of money for each portfolio:
To get the total weighted mean amount of money, multiply the total value of each portfolio by its respective weighted mean ROR.
For Portfolio 1:
[tex]\[ \text{Total Value}_1 = 2300 + 3100 + 650 + 1800 = 7850 \][/tex]
[tex]\[ \text{Total Weighted Amount}_1 = 7850 \times 0.017339490445859872 = 136.115 \][/tex]
For Portfolio 2:
[tex]\[ \text{Total Value}_2 = 1575 + 2100 + 795 + 1900 = 6370 \][/tex]
[tex]\[ \text{Total Weighted Amount}_2 = 6370 \times 0.017588697017268444 = 112.040 \][/tex]
3. Determine which portfolio has the higher total weighted mean amount of money and by how much:
Comparing the total weighted amounts:
[tex]\[ \text{Portfolio 1: } 136.115 \][/tex]
[tex]\[ \text{Portfolio 2: } 112.040 \][/tex]
Since 136.115 is greater than 112.040, Portfolio 1 has the higher total weighted mean amount of money. The difference between the weighted amounts of the two portfolios is:
[tex]\[ 136.115 - 112.040 = 24.075 \][/tex]
Thus, Portfolio 1 has the higher total weighted mean amount of money by \$24.08.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.