Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To identify the vertex of the function [tex]\( f(x) = -\frac{1}{2} |x + 8| - 5 \)[/tex], we need to understand the transformations applied to the basic absolute value function [tex]\( f(x) = |x| \)[/tex].
1. Horizontal Shift: The expression inside the absolute value, [tex]\( x + 8 \)[/tex], indicates a horizontal shift. The general form [tex]\( |x - h| \)[/tex] shifts the graph [tex]\( h \)[/tex] units to the right if [tex]\( h \)[/tex] is positive, and [tex]\( h \)[/tex] units to the left if [tex]\( h \)[/tex] is negative. In this case, [tex]\( x + 8 \)[/tex] can be interpreted as [tex]\( x - (-8) \)[/tex], indicating a shift 8 units to the left. Thus, the x-coordinate of the vertex is [tex]\( -8 \)[/tex].
2. Vertical Shift: The constant term outside the absolute value function, [tex]\( -5 \)[/tex], shifts the graph vertically. A positive value shifts the graph up, and a negative value shifts it down. Here, [tex]\( -5 \)[/tex] indicates a downward shift of 5 units. Thus, the y-coordinate of the vertex is [tex]\( -5 \)[/tex].
3. Combining these shifts, the vertex of the function is at the coordinate [tex]\( (-8, -5) \)[/tex].
Therefore, the correct answer is:
A. [tex]\((-8, -5)\)[/tex]
1. Horizontal Shift: The expression inside the absolute value, [tex]\( x + 8 \)[/tex], indicates a horizontal shift. The general form [tex]\( |x - h| \)[/tex] shifts the graph [tex]\( h \)[/tex] units to the right if [tex]\( h \)[/tex] is positive, and [tex]\( h \)[/tex] units to the left if [tex]\( h \)[/tex] is negative. In this case, [tex]\( x + 8 \)[/tex] can be interpreted as [tex]\( x - (-8) \)[/tex], indicating a shift 8 units to the left. Thus, the x-coordinate of the vertex is [tex]\( -8 \)[/tex].
2. Vertical Shift: The constant term outside the absolute value function, [tex]\( -5 \)[/tex], shifts the graph vertically. A positive value shifts the graph up, and a negative value shifts it down. Here, [tex]\( -5 \)[/tex] indicates a downward shift of 5 units. Thus, the y-coordinate of the vertex is [tex]\( -5 \)[/tex].
3. Combining these shifts, the vertex of the function is at the coordinate [tex]\( (-8, -5) \)[/tex].
Therefore, the correct answer is:
A. [tex]\((-8, -5)\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.