Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the end behavior of the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex], let's analyze the function as [tex]\( x \)[/tex] approaches negative and positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is a very large negative number, the term [tex]\(|x-2|\)[/tex] will also be a large positive number since the absolute value of a large negative number shifted by 2 is still large. Therefore, [tex]\(|x-2| \approx |x|\)[/tex] and thus behaves like [tex]\( |x| \)[/tex]. Consequently,
[tex]\[ g(x) \approx 4|x| - 3. \][/tex]
Since [tex]\( |x| \)[/tex] equals [tex]\( -x \)[/tex] when [tex]\( x \)[/tex] is negative, we have:
[tex]\[ |x-2| \approx -x \][/tex]
Thus,
[tex]\[ g(x) \approx 4(-x) - 3 = -4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( -4x - 3 \)[/tex] will decrease without bound, approaching negative infinity.
Therefore, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is a very large positive number, the term [tex]\(|x-2|\)[/tex] will be approximately equal to [tex]\( x \)[/tex] itself, because the shift by 2 becomes negligible for very large values of [tex]\( x \)[/tex]. Thus,
[tex]\[ |x-2| \approx x. \][/tex]
Then,
[tex]\[ g(x) \approx 4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 4x - 3 \)[/tex] will increase without bound, approaching positive infinity.
Therefore, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
In summary, the correct selections for the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex] are:
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is a very large negative number, the term [tex]\(|x-2|\)[/tex] will also be a large positive number since the absolute value of a large negative number shifted by 2 is still large. Therefore, [tex]\(|x-2| \approx |x|\)[/tex] and thus behaves like [tex]\( |x| \)[/tex]. Consequently,
[tex]\[ g(x) \approx 4|x| - 3. \][/tex]
Since [tex]\( |x| \)[/tex] equals [tex]\( -x \)[/tex] when [tex]\( x \)[/tex] is negative, we have:
[tex]\[ |x-2| \approx -x \][/tex]
Thus,
[tex]\[ g(x) \approx 4(-x) - 3 = -4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( -4x - 3 \)[/tex] will decrease without bound, approaching negative infinity.
Therefore, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is a very large positive number, the term [tex]\(|x-2|\)[/tex] will be approximately equal to [tex]\( x \)[/tex] itself, because the shift by 2 becomes negligible for very large values of [tex]\( x \)[/tex]. Thus,
[tex]\[ |x-2| \approx x. \][/tex]
Then,
[tex]\[ g(x) \approx 4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 4x - 3 \)[/tex] will increase without bound, approaching positive infinity.
Therefore, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
In summary, the correct selections for the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex] are:
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.