Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's determine the equation of the translated function [tex]\( g(x) \)[/tex] if the original function is [tex]\( f(x) = x^2 \)[/tex].
We are given several options for the translated function [tex]\( g(x) \)[/tex]:
1. [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
2. [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
3. [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
4. [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
### Step-by-Step Analysis:
1. Understanding Transformations:
- A translation of the form [tex]\( f(x - h) \)[/tex] shifts the graph horizontally by [tex]\( h \)[/tex] units.
- If [tex]\( h \)[/tex] is positive, the shift is to the right.
- If [tex]\( h \)[/tex] is negative, the shift is to the left.
- A translation of the form [tex]\( f(x) + k \)[/tex] shifts the graph vertically by [tex]\( k \)[/tex] units.
- If [tex]\( k \)[/tex] is positive, the shift is upward.
- If [tex]\( k \)[/tex] is negative, the shift is downward.
2. Analyzing Each Option:
- Option 1: [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the right ("-4") and 6 units up ("+6").
- Option 2: [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the left ("+6") and 4 units down ("-4").
- Option 3: [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the right ("-6") and 4 units down ("-4").
- Option 4: [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the left ("+4") and 6 units up ("+6").
3. Selecting the Correct Option:
- Based on the transformations analyzed, the option that translates the original function [tex]\( f(x) = x^2 \)[/tex] by shifting 6 units to the right and 4 units down is:
- [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
Therefore, the equation of the translated function [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = (x-6)^2 - 4 \][/tex]
This corresponds to Option 3.
We are given several options for the translated function [tex]\( g(x) \)[/tex]:
1. [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
2. [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
3. [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
4. [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
### Step-by-Step Analysis:
1. Understanding Transformations:
- A translation of the form [tex]\( f(x - h) \)[/tex] shifts the graph horizontally by [tex]\( h \)[/tex] units.
- If [tex]\( h \)[/tex] is positive, the shift is to the right.
- If [tex]\( h \)[/tex] is negative, the shift is to the left.
- A translation of the form [tex]\( f(x) + k \)[/tex] shifts the graph vertically by [tex]\( k \)[/tex] units.
- If [tex]\( k \)[/tex] is positive, the shift is upward.
- If [tex]\( k \)[/tex] is negative, the shift is downward.
2. Analyzing Each Option:
- Option 1: [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the right ("-4") and 6 units up ("+6").
- Option 2: [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the left ("+6") and 4 units down ("-4").
- Option 3: [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the right ("-6") and 4 units down ("-4").
- Option 4: [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the left ("+4") and 6 units up ("+6").
3. Selecting the Correct Option:
- Based on the transformations analyzed, the option that translates the original function [tex]\( f(x) = x^2 \)[/tex] by shifting 6 units to the right and 4 units down is:
- [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
Therefore, the equation of the translated function [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = (x-6)^2 - 4 \][/tex]
This corresponds to Option 3.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.