Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's find the limit of the function [tex]\(\frac{3m^2 - 3}{m - 1}\)[/tex] as [tex]\( m \)[/tex] approaches 1.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.