Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let’s start by breaking down each step with detailed reasons for the corresponding statement to solve the given equation [tex]\(4x + 1 = 6x - 2\)[/tex] and prove that [tex]\(x = \frac{3}{2}\)[/tex].
### Detailed Solution:
[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{Statement} & \multicolumn{1}{|c|}{Reason} \\ \hline 1. \(4x + 1 = 6x - 2\) & Given equation \\ \hline 2. \(4x + 1 + 2 = 6x\) & Addition property of equality (adding 2 to both sides) \\ \hline 3. \(4x + 3 = 6x\) & Simplifying both sides (combining like terms) \\ \hline 4. \(4x - 4x + 3 = 6x - 4x\) & Subtraction property of equality (subtracting \(4x\) from both sides) \\ \hline 5. \(3 = 2x\) & Simplifying both sides (combining like terms) \\ \hline 6. \(\frac{3}{2} = x\) & Division property of equality (dividing both sides by 2) \\ \hline 7. \(x = \frac{3}{2}\) & Symmetry property of equality (rewriting equation) \\ \hline \end{tabular} \][/tex]
### Proof Outline:
1. Given Equation:
[tex]\[ 4x + 1 = 6x - 2 \][/tex]
2. Isolate Terms with [tex]\(x\)[/tex] one side:
Add 2 to both sides of the equation to shift the constant term from the right-hand side to the left-hand side.
[tex]\[ 4x + 1 + 2 = 6x - 2 + 2 \][/tex]
Simplify both sides:
[tex]\[ 4x + 3 = 6x \][/tex]
3. Isolate Variable [tex]\(x\)[/tex]:
Subtract [tex]\(4x\)[/tex] from both sides of the equation to consolidate all [tex]\(x\)[/tex]-terms on one side.
[tex]\[ 4x + 3 - 4x = 6x - 4x \][/tex]
Simplify both sides:
[tex]\[ 3 = 2x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 2 to solve for [tex]\(x\)[/tex].
[tex]\[ \frac{3}{2} = x \][/tex]
5. Rewrite Solution Symmetrically:
To present the final answer in a traditional format, rewrite:
[tex]\[ x = \frac{3}{2} \][/tex]
This completes the proof. The solve for [tex]\(x\)[/tex] yields [tex]\(x = 1.5\)[/tex], or equivalently [tex]\(x = \frac{3}{2}\)[/tex].
### Detailed Solution:
[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{Statement} & \multicolumn{1}{|c|}{Reason} \\ \hline 1. \(4x + 1 = 6x - 2\) & Given equation \\ \hline 2. \(4x + 1 + 2 = 6x\) & Addition property of equality (adding 2 to both sides) \\ \hline 3. \(4x + 3 = 6x\) & Simplifying both sides (combining like terms) \\ \hline 4. \(4x - 4x + 3 = 6x - 4x\) & Subtraction property of equality (subtracting \(4x\) from both sides) \\ \hline 5. \(3 = 2x\) & Simplifying both sides (combining like terms) \\ \hline 6. \(\frac{3}{2} = x\) & Division property of equality (dividing both sides by 2) \\ \hline 7. \(x = \frac{3}{2}\) & Symmetry property of equality (rewriting equation) \\ \hline \end{tabular} \][/tex]
### Proof Outline:
1. Given Equation:
[tex]\[ 4x + 1 = 6x - 2 \][/tex]
2. Isolate Terms with [tex]\(x\)[/tex] one side:
Add 2 to both sides of the equation to shift the constant term from the right-hand side to the left-hand side.
[tex]\[ 4x + 1 + 2 = 6x - 2 + 2 \][/tex]
Simplify both sides:
[tex]\[ 4x + 3 = 6x \][/tex]
3. Isolate Variable [tex]\(x\)[/tex]:
Subtract [tex]\(4x\)[/tex] from both sides of the equation to consolidate all [tex]\(x\)[/tex]-terms on one side.
[tex]\[ 4x + 3 - 4x = 6x - 4x \][/tex]
Simplify both sides:
[tex]\[ 3 = 2x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 2 to solve for [tex]\(x\)[/tex].
[tex]\[ \frac{3}{2} = x \][/tex]
5. Rewrite Solution Symmetrically:
To present the final answer in a traditional format, rewrite:
[tex]\[ x = \frac{3}{2} \][/tex]
This completes the proof. The solve for [tex]\(x\)[/tex] yields [tex]\(x = 1.5\)[/tex], or equivalently [tex]\(x = \frac{3}{2}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.