Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's find out at what times the pendulum's movement will be 4 meters from its starting position using the given equation: [tex]\( f(x) = -2 \cos \left(\frac{x}{4}\right) + 2 \)[/tex].
1. Set the equation equal to 4: To determine the times at which the displacement is 4 meters, we set up the equation:
[tex]\[ -2 \cos \left(\frac{x}{4}\right) + 2 = 4 \][/tex]
2. Isolate the cosine term: Subtract 2 from both sides to isolate the cosine term:
[tex]\[ -2 \cos \left(\frac{x}{4}\right) = 2 \][/tex]
3. Divide by -2: Simplify by dividing both sides by -2:
[tex]\[ \cos \left(\frac{x}{4}\right) = -1 \][/tex]
4. Solve for [tex]\(\frac{x}{4}\)[/tex]: We know that [tex]\(\cos(\theta) = -1\)[/tex] happens when the angle [tex]\(\theta\)[/tex] is an odd multiple of [tex]\(\pi\)[/tex]:
[tex]\[ \frac{x}{4} = (2k + 1) \pi \][/tex]
where [tex]\(k\)[/tex] is an integer (representing the periodic nature of the cosine function).
5. Solve for [tex]\(x\)[/tex]: Multiply both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 4(2k + 1) \pi \][/tex]
6. General solution: We can rewrite this solution to express it more clearly:
[tex]\[ x = 4\pi (2k + 1) \][/tex]
which simplifies to
[tex]\[ x = 4\pi + 8k\pi \][/tex]
Here, for simplicity, we can represent [tex]\(k = n\)[/tex], where [tex]\(n\)[/tex] is any integer:
[tex]\[ x = 4\pi + 4n\pi \][/tex]
Therefore, the times when the pendulum's movement will be 4 meters from its starting position are given by:
[tex]\[ \boxed{4\pi + 4n \text{ seconds}} \][/tex]
Thus, the correct answer is [tex]\(4\pi + 4n \)[/tex] seconds.
1. Set the equation equal to 4: To determine the times at which the displacement is 4 meters, we set up the equation:
[tex]\[ -2 \cos \left(\frac{x}{4}\right) + 2 = 4 \][/tex]
2. Isolate the cosine term: Subtract 2 from both sides to isolate the cosine term:
[tex]\[ -2 \cos \left(\frac{x}{4}\right) = 2 \][/tex]
3. Divide by -2: Simplify by dividing both sides by -2:
[tex]\[ \cos \left(\frac{x}{4}\right) = -1 \][/tex]
4. Solve for [tex]\(\frac{x}{4}\)[/tex]: We know that [tex]\(\cos(\theta) = -1\)[/tex] happens when the angle [tex]\(\theta\)[/tex] is an odd multiple of [tex]\(\pi\)[/tex]:
[tex]\[ \frac{x}{4} = (2k + 1) \pi \][/tex]
where [tex]\(k\)[/tex] is an integer (representing the periodic nature of the cosine function).
5. Solve for [tex]\(x\)[/tex]: Multiply both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 4(2k + 1) \pi \][/tex]
6. General solution: We can rewrite this solution to express it more clearly:
[tex]\[ x = 4\pi (2k + 1) \][/tex]
which simplifies to
[tex]\[ x = 4\pi + 8k\pi \][/tex]
Here, for simplicity, we can represent [tex]\(k = n\)[/tex], where [tex]\(n\)[/tex] is any integer:
[tex]\[ x = 4\pi + 4n\pi \][/tex]
Therefore, the times when the pendulum's movement will be 4 meters from its starting position are given by:
[tex]\[ \boxed{4\pi + 4n \text{ seconds}} \][/tex]
Thus, the correct answer is [tex]\(4\pi + 4n \)[/tex] seconds.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.