Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's determine the volume of a 0.235-mol ideal gas sample at 1.10 atm and [tex]\(25^{\circ}C\)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.