Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\(16^x = 64^{x+4}\)[/tex], let's go through the steps to find the solutions.
Given equation:
[tex]\[ 16^x = 64^{x+4} \][/tex]
First, express both sides of the equation with a common base. Notice that [tex]\(16\)[/tex] and [tex]\(64\)[/tex] can both be written as powers of [tex]\(2\)[/tex]:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 64 = 2^6 \][/tex]
Therefore, rewrite the equation as:
[tex]\[ (2^4)^x = (2^6)^{x+4} \][/tex]
This simplifies to:
[tex]\[ 2^{4x} = 2^{6(x+4)} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 6(x + 4) \][/tex]
Expand and simplify the equation:
[tex]\[ 4x = 6x + 24 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 4x - 6x = 24 \][/tex]
[tex]\[ -2x = 24 \][/tex]
Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = -12 \][/tex]
Thus, [tex]\(x = -12\)[/tex] is indeed one of the solutions.
The second solution seems to be more complex and contains a logarithmic term. Therefore, there is another solution:
[tex]\[ x = \frac{-\log(4096) + i\pi}{\log(2)} \][/tex]
However, only the real solution from our equation is [tex]\(x = -12\)[/tex].
Therefore, the only real value of [tex]\(x\)[/tex] that is a solution to the equation [tex]\(16^x = 64^{x+4}\)[/tex] is:
[tex]\[ x = -12 \][/tex]
Given equation:
[tex]\[ 16^x = 64^{x+4} \][/tex]
First, express both sides of the equation with a common base. Notice that [tex]\(16\)[/tex] and [tex]\(64\)[/tex] can both be written as powers of [tex]\(2\)[/tex]:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 64 = 2^6 \][/tex]
Therefore, rewrite the equation as:
[tex]\[ (2^4)^x = (2^6)^{x+4} \][/tex]
This simplifies to:
[tex]\[ 2^{4x} = 2^{6(x+4)} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 6(x + 4) \][/tex]
Expand and simplify the equation:
[tex]\[ 4x = 6x + 24 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 4x - 6x = 24 \][/tex]
[tex]\[ -2x = 24 \][/tex]
Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = -12 \][/tex]
Thus, [tex]\(x = -12\)[/tex] is indeed one of the solutions.
The second solution seems to be more complex and contains a logarithmic term. Therefore, there is another solution:
[tex]\[ x = \frac{-\log(4096) + i\pi}{\log(2)} \][/tex]
However, only the real solution from our equation is [tex]\(x = -12\)[/tex].
Therefore, the only real value of [tex]\(x\)[/tex] that is a solution to the equation [tex]\(16^x = 64^{x+4}\)[/tex] is:
[tex]\[ x = -12 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.