Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\(9^{x+4} = 11\)[/tex], we will use logarithms to simplify and solve for [tex]\(x\)[/tex]. Follow these steps:
1. Apply the logarithm to both sides of the equation:
[tex]\[ \log(9^{x+4}) = \log(11) \][/tex]
2. Use the power rule of logarithms which states [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ (x+4) \log(9) = \log(11) \][/tex]
3. Isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ x + 4 = \frac{\log(11)}{\log(9)} \][/tex]
4. Calculate the right-hand side:
[tex]\(\log(11)\)[/tex] and [tex]\(\log(9)\)[/tex] are standard logarithms which can be calculated using a calculator; the precise values of [tex]\(\log(11)\)[/tex] and [tex]\(\log(9)\)[/tex] are:
[tex]\[ \log(11) \approx 1.041393 \][/tex]
[tex]\[ \log(9) \approx 0.954243 \][/tex]
So,
[tex]\[ \frac{\log(11)}{\log(9)} \approx \frac{1.041393}{0.954243} \approx 1.091329 \][/tex]
5. To isolate [tex]\(x\)[/tex], subtract 4 from both sides:
[tex]\[ x = 1.091329 - 4 \][/tex]
[tex]\[ x \approx -2.908671 \][/tex]
Now, we need to compare this solution with the given potential answers to determine the closest one. The possible answers are:
- [tex]\(-3.094\)[/tex]
- [tex]\(-2.909\)[/tex]
- [tex]\(4.916\)[/tex]
- [tex]\(5.091\)[/tex]
The solution we found is approximately [tex]\(-2.908671\)[/tex]. Among the choices, the closest to [tex]\(-2.908671\)[/tex] is [tex]\(-2.909\)[/tex].
Therefore, the nearest solution to [tex]\(x\)[/tex] is:
[tex]\[ \boxed{-2.909} \][/tex]
1. Apply the logarithm to both sides of the equation:
[tex]\[ \log(9^{x+4}) = \log(11) \][/tex]
2. Use the power rule of logarithms which states [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ (x+4) \log(9) = \log(11) \][/tex]
3. Isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ x + 4 = \frac{\log(11)}{\log(9)} \][/tex]
4. Calculate the right-hand side:
[tex]\(\log(11)\)[/tex] and [tex]\(\log(9)\)[/tex] are standard logarithms which can be calculated using a calculator; the precise values of [tex]\(\log(11)\)[/tex] and [tex]\(\log(9)\)[/tex] are:
[tex]\[ \log(11) \approx 1.041393 \][/tex]
[tex]\[ \log(9) \approx 0.954243 \][/tex]
So,
[tex]\[ \frac{\log(11)}{\log(9)} \approx \frac{1.041393}{0.954243} \approx 1.091329 \][/tex]
5. To isolate [tex]\(x\)[/tex], subtract 4 from both sides:
[tex]\[ x = 1.091329 - 4 \][/tex]
[tex]\[ x \approx -2.908671 \][/tex]
Now, we need to compare this solution with the given potential answers to determine the closest one. The possible answers are:
- [tex]\(-3.094\)[/tex]
- [tex]\(-2.909\)[/tex]
- [tex]\(4.916\)[/tex]
- [tex]\(5.091\)[/tex]
The solution we found is approximately [tex]\(-2.908671\)[/tex]. Among the choices, the closest to [tex]\(-2.908671\)[/tex] is [tex]\(-2.909\)[/tex].
Therefore, the nearest solution to [tex]\(x\)[/tex] is:
[tex]\[ \boxed{-2.909} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.