At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's tackle each part of the question with detailed, step-by-step explanations.
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.