At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the value of [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex], given that [tex]\(\cos (\alpha+\beta) = 0\)[/tex], we can follow these steps:
1. Recognize the Relationship: First, we need to understand the relationship given by [tex]\(\cos (\alpha+\beta) = 0\)[/tex]. The cosine function is zero when its argument is an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \alpha + \beta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer.
2. Simplification for Simplicity: Since [tex]\(\cos (\alpha+\beta)\)[/tex] is periodic with period [tex]\(2\pi\)[/tex], we can simplify our calculations by choosing the smallest positive multiple. This means:
[tex]\[ \alpha + \beta = \frac{\pi}{2} \][/tex]
3. Halving the Angle: Now, we need to calculate [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex]. Substitute the value we have from step 2:
[tex]\[ \frac{\alpha + \beta}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4} \][/tex]
4. Calculate the Cosine Value: Finally, compute the cosine of [tex]\(\frac{\pi}{4}\)[/tex]:
[tex]\[ \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
In numerical form, the value of [tex]\(\frac{\sqrt{2}}{2}\)[/tex], which is a commonly known trigonometric value, is approximately:
[tex]\[ 0.7071067811865476 \][/tex]
Therefore, the value of [tex]\(\cos \left(\frac{\alpha + \beta}{2}\right)\)[/tex] is:
[tex]\[ 0.7071067811865476 \][/tex]
1. Recognize the Relationship: First, we need to understand the relationship given by [tex]\(\cos (\alpha+\beta) = 0\)[/tex]. The cosine function is zero when its argument is an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \alpha + \beta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer.
2. Simplification for Simplicity: Since [tex]\(\cos (\alpha+\beta)\)[/tex] is periodic with period [tex]\(2\pi\)[/tex], we can simplify our calculations by choosing the smallest positive multiple. This means:
[tex]\[ \alpha + \beta = \frac{\pi}{2} \][/tex]
3. Halving the Angle: Now, we need to calculate [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex]. Substitute the value we have from step 2:
[tex]\[ \frac{\alpha + \beta}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4} \][/tex]
4. Calculate the Cosine Value: Finally, compute the cosine of [tex]\(\frac{\pi}{4}\)[/tex]:
[tex]\[ \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
In numerical form, the value of [tex]\(\frac{\sqrt{2}}{2}\)[/tex], which is a commonly known trigonometric value, is approximately:
[tex]\[ 0.7071067811865476 \][/tex]
Therefore, the value of [tex]\(\cos \left(\frac{\alpha + \beta}{2}\right)\)[/tex] is:
[tex]\[ 0.7071067811865476 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.