Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the length of one leg of a 45°-45°-90° triangle when the hypotenuse is given, follow these steps:
1. Understand the properties of a 45°-45°-90° triangle:
- In a 45°-45°-90° triangle, the legs are congruent (equal in length).
- The relationship between the legs and the hypotenuse is expressed using the formula:
[tex]\[ \text{hypotenuse} = \text{leg} \times \sqrt{2} \][/tex]
2. Given information:
- Hypotenuse = [tex]\( 22\sqrt{2} \)[/tex] units
3. Set up the equation based on the triangle properties:
- Let [tex]\( l \)[/tex] be the length of one leg.
- According to the properties, we have:
[tex]\[ \text{hypotenuse} = l \times \sqrt{2} \][/tex]
- Substitute the given hypotenuse into the equation:
[tex]\[ 22\sqrt{2} = l \times \sqrt{2} \][/tex]
4. Solve for [tex]\( l \)[/tex]:
- To isolate [tex]\( l \)[/tex], divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ l = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
- Simplifying the expression on the right-hand side:
[tex]\[ l = 22 \][/tex]
Thus, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units. This matches the option "22 units."
1. Understand the properties of a 45°-45°-90° triangle:
- In a 45°-45°-90° triangle, the legs are congruent (equal in length).
- The relationship between the legs and the hypotenuse is expressed using the formula:
[tex]\[ \text{hypotenuse} = \text{leg} \times \sqrt{2} \][/tex]
2. Given information:
- Hypotenuse = [tex]\( 22\sqrt{2} \)[/tex] units
3. Set up the equation based on the triangle properties:
- Let [tex]\( l \)[/tex] be the length of one leg.
- According to the properties, we have:
[tex]\[ \text{hypotenuse} = l \times \sqrt{2} \][/tex]
- Substitute the given hypotenuse into the equation:
[tex]\[ 22\sqrt{2} = l \times \sqrt{2} \][/tex]
4. Solve for [tex]\( l \)[/tex]:
- To isolate [tex]\( l \)[/tex], divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ l = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
- Simplifying the expression on the right-hand side:
[tex]\[ l = 22 \][/tex]
Thus, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units. This matches the option "22 units."
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.