Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's go through each part of the question step-by-step.
### 1. Draw a Number Line and Mark the Rational Numbers [tex]\(\frac{-2}{3}\)[/tex] and [tex]\(\frac{-5}{3}\)[/tex] on it.
Here's a representation of the number line with [tex]\(\frac{-2}{3}\)[/tex] and [tex]\(\frac{-5}{3}\)[/tex] marked on it:
[tex]\[ \text{Number Line: } ... -2, \frac{-5}{3}, -1.333, -1, \frac{-2}{3}, -0.666, 0, \frac{1}{3}, 0.333, \frac{2}{3}, 0.666, 1, ... \][/tex]
### 2. Write Two Equivalent Rational Numbers for Each of the Following:
(i) [tex]\(\frac{6}{-7}\)[/tex]
Equivalent fractions can be found by multiplying or dividing the numerator and the denominator by the same non-zero number.
[tex]\[ \frac{6}{-7} = \frac{-6}{7} \quad \text{(Multiplying numerator and denominator by -1)} \][/tex]
[tex]\[ \frac{6}{-7} = \frac{12}{-14} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
So two equivalent fractions for [tex]\(\frac{6}{-7}\)[/tex] are:
[tex]\(-0.8571428571428571 \quad (\frac{-6}{7})\)[/tex]
[tex]\(-0.8571428571428571 \quad (\frac{12}{-14})\)[/tex]
(ii) [tex]\(\frac{1}{20}\)[/tex]
[tex]\[ \frac{1}{20} = \frac{2}{40} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
[tex]\[ \frac{1}{20} = \frac{3}{60} \quad \text{(Multiplying numerator and denominator by 3)} \][/tex]
So two equivalent fractions for [tex]\(\frac{1}{20}\)[/tex] are:
[tex]\(0.05 \quad (\frac{2}{40})\)[/tex]
[tex]\(0.05 \quad (\frac{3}{60})\)[/tex]
(iii) [tex]\(\frac{-2}{5}\)[/tex]
[tex]\[ \frac{-2}{5} = \frac{2}{-5} \quad \text{(Multiplying numerator and denominator by -1)} \][/tex]
[tex]\[ \frac{-2}{5} = \frac{-4}{10} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
So two equivalent fractions for [tex]\(\frac{-2}{5}\)[/tex] are:
[tex]\(-0.4 \quad (\frac{2}{-5})\)[/tex]
[tex]\(-0.4 \quad (\frac{-4}{10})\)[/tex]
### 3. Identify the Greater Fraction:
(iv) [tex]\(\frac{-4}{-8}\)[/tex]
To simplify this, we first note that:
[tex]\[ \frac{-4}{-8} = \frac{4}{8} = \frac{1}{2} \][/tex]
So the fraction simplifies to [tex]\(\frac{1}{2}\)[/tex]. Comparing this with [tex]\(\frac{1}{1}\)[/tex], we can see that:
[tex]\[ \frac{1}{2} = 0.5 \quad \text{and} \quad \frac{1}{1} = 1.0 \][/tex]
Clearly, [tex]\(\frac{1}{1}\)[/tex] is greater than [tex]\(\frac{1}{2}\)[/tex].
Therefore, the greater fraction between [tex]\(\frac{-4}{-8}\)[/tex] (which simplifies to [tex]\(\frac{1}{2}\)[/tex]) and [tex]\(\frac{1}{1}\)[/tex] is:
[tex]\(1.0\)[/tex]
This completes the detailed solution to the problem given.
### 1. Draw a Number Line and Mark the Rational Numbers [tex]\(\frac{-2}{3}\)[/tex] and [tex]\(\frac{-5}{3}\)[/tex] on it.
Here's a representation of the number line with [tex]\(\frac{-2}{3}\)[/tex] and [tex]\(\frac{-5}{3}\)[/tex] marked on it:
[tex]\[ \text{Number Line: } ... -2, \frac{-5}{3}, -1.333, -1, \frac{-2}{3}, -0.666, 0, \frac{1}{3}, 0.333, \frac{2}{3}, 0.666, 1, ... \][/tex]
### 2. Write Two Equivalent Rational Numbers for Each of the Following:
(i) [tex]\(\frac{6}{-7}\)[/tex]
Equivalent fractions can be found by multiplying or dividing the numerator and the denominator by the same non-zero number.
[tex]\[ \frac{6}{-7} = \frac{-6}{7} \quad \text{(Multiplying numerator and denominator by -1)} \][/tex]
[tex]\[ \frac{6}{-7} = \frac{12}{-14} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
So two equivalent fractions for [tex]\(\frac{6}{-7}\)[/tex] are:
[tex]\(-0.8571428571428571 \quad (\frac{-6}{7})\)[/tex]
[tex]\(-0.8571428571428571 \quad (\frac{12}{-14})\)[/tex]
(ii) [tex]\(\frac{1}{20}\)[/tex]
[tex]\[ \frac{1}{20} = \frac{2}{40} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
[tex]\[ \frac{1}{20} = \frac{3}{60} \quad \text{(Multiplying numerator and denominator by 3)} \][/tex]
So two equivalent fractions for [tex]\(\frac{1}{20}\)[/tex] are:
[tex]\(0.05 \quad (\frac{2}{40})\)[/tex]
[tex]\(0.05 \quad (\frac{3}{60})\)[/tex]
(iii) [tex]\(\frac{-2}{5}\)[/tex]
[tex]\[ \frac{-2}{5} = \frac{2}{-5} \quad \text{(Multiplying numerator and denominator by -1)} \][/tex]
[tex]\[ \frac{-2}{5} = \frac{-4}{10} \quad \text{(Multiplying numerator and denominator by 2)} \][/tex]
So two equivalent fractions for [tex]\(\frac{-2}{5}\)[/tex] are:
[tex]\(-0.4 \quad (\frac{2}{-5})\)[/tex]
[tex]\(-0.4 \quad (\frac{-4}{10})\)[/tex]
### 3. Identify the Greater Fraction:
(iv) [tex]\(\frac{-4}{-8}\)[/tex]
To simplify this, we first note that:
[tex]\[ \frac{-4}{-8} = \frac{4}{8} = \frac{1}{2} \][/tex]
So the fraction simplifies to [tex]\(\frac{1}{2}\)[/tex]. Comparing this with [tex]\(\frac{1}{1}\)[/tex], we can see that:
[tex]\[ \frac{1}{2} = 0.5 \quad \text{and} \quad \frac{1}{1} = 1.0 \][/tex]
Clearly, [tex]\(\frac{1}{1}\)[/tex] is greater than [tex]\(\frac{1}{2}\)[/tex].
Therefore, the greater fraction between [tex]\(\frac{-4}{-8}\)[/tex] (which simplifies to [tex]\(\frac{1}{2}\)[/tex]) and [tex]\(\frac{1}{1}\)[/tex] is:
[tex]\(1.0\)[/tex]
This completes the detailed solution to the problem given.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.