Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the expression [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex] step-by-step.
1. Understand the expression: We are given [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex]. Our goal is to simplify this expression to a real number.
2. Change the base of the logarithm: The logarithm [tex]\(\log_{2\sqrt{2}} 27\)[/tex] can be converted to a base-2 logarithm using the change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{\log_{2} (2\sqrt{2})} \][/tex]
3. Simplify the denominator: Let's simplify [tex]\(\log_{2} (2\sqrt{2})\)[/tex]:
[tex]\[ 2\sqrt{2} = 2 \cdot 2^{1/2} = 2^{1 + 1/2} = 2^{3/2} \][/tex]
Thus,
[tex]\[ \log_{2} (2\sqrt{2}) = \log_{2} (2^{3/2}) = \frac{3}{2} \][/tex]
4. Substitute back into the expression: Now substitute [tex]\(\log_{2} (2\sqrt{2})\)[/tex] back into our change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{3/2} = \frac{2}{3} \log_{2} 27 \][/tex]
5. Simplify the power: Now we need to simplify [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex]:
[tex]\[ 2^{\log_{2\sqrt{2}} 27} = 2^{(\frac{2}{3} \log_{2} 27)} \][/tex]
6. Substitute values: We need the value of [tex]\(\log_{2} 27\)[/tex]. We know it is approximately [tex]\( 4.754887502163469 \)[/tex].
Using this value:
[tex]\[ \frac{2}{3} \log_{2} 27 = \frac{2}{3} \times 4.754887502163469 \approx 3.1699250014423126 \][/tex]
7. Calculate the final power: Raise 2 to this power:
[tex]\[ 2^{3.1699250014423126} \approx 9.000000000000002 \][/tex]
Thus, the value of [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex] is approximately [tex]\( 9.000000000000002 \)[/tex].
1. Understand the expression: We are given [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex]. Our goal is to simplify this expression to a real number.
2. Change the base of the logarithm: The logarithm [tex]\(\log_{2\sqrt{2}} 27\)[/tex] can be converted to a base-2 logarithm using the change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{\log_{2} (2\sqrt{2})} \][/tex]
3. Simplify the denominator: Let's simplify [tex]\(\log_{2} (2\sqrt{2})\)[/tex]:
[tex]\[ 2\sqrt{2} = 2 \cdot 2^{1/2} = 2^{1 + 1/2} = 2^{3/2} \][/tex]
Thus,
[tex]\[ \log_{2} (2\sqrt{2}) = \log_{2} (2^{3/2}) = \frac{3}{2} \][/tex]
4. Substitute back into the expression: Now substitute [tex]\(\log_{2} (2\sqrt{2})\)[/tex] back into our change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{3/2} = \frac{2}{3} \log_{2} 27 \][/tex]
5. Simplify the power: Now we need to simplify [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex]:
[tex]\[ 2^{\log_{2\sqrt{2}} 27} = 2^{(\frac{2}{3} \log_{2} 27)} \][/tex]
6. Substitute values: We need the value of [tex]\(\log_{2} 27\)[/tex]. We know it is approximately [tex]\( 4.754887502163469 \)[/tex].
Using this value:
[tex]\[ \frac{2}{3} \log_{2} 27 = \frac{2}{3} \times 4.754887502163469 \approx 3.1699250014423126 \][/tex]
7. Calculate the final power: Raise 2 to this power:
[tex]\[ 2^{3.1699250014423126} \approx 9.000000000000002 \][/tex]
Thus, the value of [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex] is approximately [tex]\( 9.000000000000002 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.