Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the length of the diagonal [tex]\( x \)[/tex] of a parallelogram with given side lengths and an angle, we will use the Law of Cosines. Here is a step-by-step solution:
1. Identify the given values:
- Side lengths: [tex]\( a = 13 \)[/tex] and [tex]\( b = 17 \)[/tex]
- Included angle: [tex]\( \angle A = 84^\circ \)[/tex]
2. Convert the angle from degrees to radians:
- The angle in radians is approximately [tex]\( 1.466 \, \text{radians} \)[/tex].
3. Apply the Law of Cosines to find the length of the diagonal:
The Law of Cosines formula for the length of the diagonal (let's suppose [tex]\( c \)[/tex] as the diagonal length) is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\angle A) \][/tex]
Substituting the given values:
[tex]\[ c^2 = 13^2 + 17^2 - 2 \cdot 13 \cdot 17 \cdot \cos(84^\circ) \][/tex]
4. Calculate the value of [tex]\( c^2 \)[/tex]:
- Calculation results in [tex]\( c^2 \approx 411.798 \)[/tex]
5. Find the length of [tex]\( c \)[/tex] by taking the square root:
[tex]\[ c = \sqrt{411.798} \approx 20.293 \][/tex]
6. Round the length of the diagonal to the nearest whole number:
- The rounded value is [tex]\( 20 \)[/tex].
So the length of the diagonal [tex]\( x \)[/tex] to the nearest whole number is [tex]\( \boxed{20} \)[/tex].
1. Identify the given values:
- Side lengths: [tex]\( a = 13 \)[/tex] and [tex]\( b = 17 \)[/tex]
- Included angle: [tex]\( \angle A = 84^\circ \)[/tex]
2. Convert the angle from degrees to radians:
- The angle in radians is approximately [tex]\( 1.466 \, \text{radians} \)[/tex].
3. Apply the Law of Cosines to find the length of the diagonal:
The Law of Cosines formula for the length of the diagonal (let's suppose [tex]\( c \)[/tex] as the diagonal length) is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\angle A) \][/tex]
Substituting the given values:
[tex]\[ c^2 = 13^2 + 17^2 - 2 \cdot 13 \cdot 17 \cdot \cos(84^\circ) \][/tex]
4. Calculate the value of [tex]\( c^2 \)[/tex]:
- Calculation results in [tex]\( c^2 \approx 411.798 \)[/tex]
5. Find the length of [tex]\( c \)[/tex] by taking the square root:
[tex]\[ c = \sqrt{411.798} \approx 20.293 \][/tex]
6. Round the length of the diagonal to the nearest whole number:
- The rounded value is [tex]\( 20 \)[/tex].
So the length of the diagonal [tex]\( x \)[/tex] to the nearest whole number is [tex]\( \boxed{20} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.