Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the given problems step-by-step for the matrix [tex]\( A \)[/tex] and its eigenvalues.
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.