Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To construct a quadratic equation given its roots, we need to use the fact that for a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], if [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots, then:
1. The sum of the roots, [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex]
2. The product of the roots, [tex]\(\alpha \beta = \frac{c}{a}\)[/tex]
Given the roots [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2 \frac{2}{3}\)[/tex], we first convert these numbers to a common fraction form:
- [tex]\(\frac{4}{5}\)[/tex] is already in fraction form.
- [tex]\(-2 \frac{2}{3}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{2}{3} = -\left(2 + \frac{2}{3}\right) = -\left(\frac{6}{3} + \frac{2}{3}\right) = -\frac{8}{3} \][/tex]
Now, let's denote the roots as:
[tex]\[ \alpha = \frac{4}{5}, \quad \beta = -\frac{8}{3} \][/tex]
Step 1: Calculate the sum of the roots.
Sum of the roots [tex]\(\alpha + \beta\)[/tex] is:
[tex]\[ \alpha + \beta = \frac{4}{5} + \left( -\frac{8}{3} \right) \][/tex]
To add these fractions, we need a common denominator. The least common multiple of 5 and 3 is 15. Converting both fractions to have this common denominator:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}, \quad -\frac{8}{3} = \frac{-8 \times 5}{3 \times 5} = \frac{-40}{15} \][/tex]
Now we can add them:
[tex]\[ \frac{12}{15} + \frac{-40}{15} = \frac{12 - 40}{15} = \frac{-28}{15} \][/tex]
Step 2: Calculate the product of the roots.
Product of the roots [tex]\(\alpha \beta\)[/tex] is:
[tex]\[ \alpha \beta = \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) \][/tex]
Multiplying the fractions:
[tex]\[ \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) = \frac{4 \times (-8)}{5 \times 3} = \frac{-32}{15} \][/tex]
Step 3: Write the quadratic equation using the sum and product of the roots.
In general, the quadratic equation based on the sum and product of the roots is given by:
[tex]\[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \][/tex]
Plugging in our values:
[tex]\[ x^2 - \left(\frac{-28}{15}\right)x + \left(\frac{-32}{15}\right) = 0 \][/tex]
Simplifying the signs:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
Thus, the quadratic equation whose roots are [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2\frac{2}{3}\)[/tex] is:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
1. The sum of the roots, [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex]
2. The product of the roots, [tex]\(\alpha \beta = \frac{c}{a}\)[/tex]
Given the roots [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2 \frac{2}{3}\)[/tex], we first convert these numbers to a common fraction form:
- [tex]\(\frac{4}{5}\)[/tex] is already in fraction form.
- [tex]\(-2 \frac{2}{3}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{2}{3} = -\left(2 + \frac{2}{3}\right) = -\left(\frac{6}{3} + \frac{2}{3}\right) = -\frac{8}{3} \][/tex]
Now, let's denote the roots as:
[tex]\[ \alpha = \frac{4}{5}, \quad \beta = -\frac{8}{3} \][/tex]
Step 1: Calculate the sum of the roots.
Sum of the roots [tex]\(\alpha + \beta\)[/tex] is:
[tex]\[ \alpha + \beta = \frac{4}{5} + \left( -\frac{8}{3} \right) \][/tex]
To add these fractions, we need a common denominator. The least common multiple of 5 and 3 is 15. Converting both fractions to have this common denominator:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}, \quad -\frac{8}{3} = \frac{-8 \times 5}{3 \times 5} = \frac{-40}{15} \][/tex]
Now we can add them:
[tex]\[ \frac{12}{15} + \frac{-40}{15} = \frac{12 - 40}{15} = \frac{-28}{15} \][/tex]
Step 2: Calculate the product of the roots.
Product of the roots [tex]\(\alpha \beta\)[/tex] is:
[tex]\[ \alpha \beta = \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) \][/tex]
Multiplying the fractions:
[tex]\[ \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) = \frac{4 \times (-8)}{5 \times 3} = \frac{-32}{15} \][/tex]
Step 3: Write the quadratic equation using the sum and product of the roots.
In general, the quadratic equation based on the sum and product of the roots is given by:
[tex]\[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \][/tex]
Plugging in our values:
[tex]\[ x^2 - \left(\frac{-28}{15}\right)x + \left(\frac{-32}{15}\right) = 0 \][/tex]
Simplifying the signs:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
Thus, the quadratic equation whose roots are [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2\frac{2}{3}\)[/tex] is:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.