Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

(b) Construct a quadratic equation whose roots are [tex]\frac{4}{5}[/tex] and [tex]-2 \frac{2}{3}[/tex].

Sagot :

To construct a quadratic equation given its roots, we need to use the fact that for a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], if [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots, then:

1. The sum of the roots, [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex]
2. The product of the roots, [tex]\(\alpha \beta = \frac{c}{a}\)[/tex]

Given the roots [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2 \frac{2}{3}\)[/tex], we first convert these numbers to a common fraction form:

- [tex]\(\frac{4}{5}\)[/tex] is already in fraction form.
- [tex]\(-2 \frac{2}{3}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{2}{3} = -\left(2 + \frac{2}{3}\right) = -\left(\frac{6}{3} + \frac{2}{3}\right) = -\frac{8}{3} \][/tex]

Now, let's denote the roots as:
[tex]\[ \alpha = \frac{4}{5}, \quad \beta = -\frac{8}{3} \][/tex]

Step 1: Calculate the sum of the roots.

Sum of the roots [tex]\(\alpha + \beta\)[/tex] is:
[tex]\[ \alpha + \beta = \frac{4}{5} + \left( -\frac{8}{3} \right) \][/tex]

To add these fractions, we need a common denominator. The least common multiple of 5 and 3 is 15. Converting both fractions to have this common denominator:

[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}, \quad -\frac{8}{3} = \frac{-8 \times 5}{3 \times 5} = \frac{-40}{15} \][/tex]

Now we can add them:
[tex]\[ \frac{12}{15} + \frac{-40}{15} = \frac{12 - 40}{15} = \frac{-28}{15} \][/tex]

Step 2: Calculate the product of the roots.

Product of the roots [tex]\(\alpha \beta\)[/tex] is:
[tex]\[ \alpha \beta = \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) \][/tex]

Multiplying the fractions:
[tex]\[ \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) = \frac{4 \times (-8)}{5 \times 3} = \frac{-32}{15} \][/tex]

Step 3: Write the quadratic equation using the sum and product of the roots.

In general, the quadratic equation based on the sum and product of the roots is given by:
[tex]\[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \][/tex]

Plugging in our values:
[tex]\[ x^2 - \left(\frac{-28}{15}\right)x + \left(\frac{-32}{15}\right) = 0 \][/tex]

Simplifying the signs:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]

Thus, the quadratic equation whose roots are [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2\frac{2}{3}\)[/tex] is:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.