Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem of finding the adjugate of the matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix} \)[/tex], we can proceed with the following steps:
### Step 1: Calculate the Determinant of the Matrix [tex]\( A \)[/tex]
The determinant of a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by the formula:
[tex]\[ \text{Det}(A) = ad - bc \][/tex]
For the given matrix [tex]\( A \)[/tex]:
[tex]\( a = 2 \)[/tex], [tex]\( b = 3 \)[/tex], [tex]\( c = 4 \)[/tex], and [tex]\( d = -5 \)[/tex]. Therefore,
[tex]\[ \text{Det}(A) = (2 \cdot (-5)) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
So, the determinant of the matrix [tex]\( A \)[/tex] is [tex]\(-22\)[/tex].
### Step 2: Confirm the Matrix is Invertible
A matrix is invertible if its determinant is non-zero. Since the determinant of [tex]\( A \)[/tex] is [tex]\(-22\)[/tex], which is non-zero, the matrix [tex]\( A \)[/tex] is indeed invertible.
### Step 3: Compute the Adjugate of the Matrix [tex]\( A \)[/tex]
For a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the adjugate is computed by:
[tex]\[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to our matrix [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
### Step 4: Validate the Result
We can verify our result for the adjugate is correct based on the solution provided:
- The computed determinant is [tex]\(-22\)[/tex].
- The computed adjugate matrix entries are [tex]\(-5\)[/tex], [tex]\(-3\)[/tex], [tex]\(-4\)[/tex], and [tex]\(2\)[/tex].
Thus, the final step-by-step solution to find the adjugate of [tex]\( A = \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix} \)[/tex] confirms:
- The determinant of [tex]\( A \)[/tex] is [tex]\(-22\)[/tex].
- The adjugate of [tex]\( A \)[/tex] is [tex]\( \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \)[/tex].
This matches the given solution.
### Step 1: Calculate the Determinant of the Matrix [tex]\( A \)[/tex]
The determinant of a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by the formula:
[tex]\[ \text{Det}(A) = ad - bc \][/tex]
For the given matrix [tex]\( A \)[/tex]:
[tex]\( a = 2 \)[/tex], [tex]\( b = 3 \)[/tex], [tex]\( c = 4 \)[/tex], and [tex]\( d = -5 \)[/tex]. Therefore,
[tex]\[ \text{Det}(A) = (2 \cdot (-5)) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
So, the determinant of the matrix [tex]\( A \)[/tex] is [tex]\(-22\)[/tex].
### Step 2: Confirm the Matrix is Invertible
A matrix is invertible if its determinant is non-zero. Since the determinant of [tex]\( A \)[/tex] is [tex]\(-22\)[/tex], which is non-zero, the matrix [tex]\( A \)[/tex] is indeed invertible.
### Step 3: Compute the Adjugate of the Matrix [tex]\( A \)[/tex]
For a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the adjugate is computed by:
[tex]\[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to our matrix [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
### Step 4: Validate the Result
We can verify our result for the adjugate is correct based on the solution provided:
- The computed determinant is [tex]\(-22\)[/tex].
- The computed adjugate matrix entries are [tex]\(-5\)[/tex], [tex]\(-3\)[/tex], [tex]\(-4\)[/tex], and [tex]\(2\)[/tex].
Thus, the final step-by-step solution to find the adjugate of [tex]\( A = \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix} \)[/tex] confirms:
- The determinant of [tex]\( A \)[/tex] is [tex]\(-22\)[/tex].
- The adjugate of [tex]\( A \)[/tex] is [tex]\( \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \)[/tex].
This matches the given solution.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.