Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( a \)[/tex] that makes the matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
an identity matrix, we first need to understand what an identity matrix is.
An identity matrix is a special type of matrix in which all the elements on the main diagonal are 1, and all other elements are 0. In the context of a 2x2 identity matrix, it is represented as
[tex]\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Comparing this with the given matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
we observe that for this matrix to be equivalent to the identity matrix, the entries on the main diagonal must both be equal to 1. Therefore, we need both instances of [tex]\( a \)[/tex] in the matrix to be 1.
This means:
[tex]\[ a = 1 \][/tex]
So, the value of [tex]\( a \)[/tex] that makes the given matrix an identity matrix is [tex]\( \boxed{1} \)[/tex].
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
an identity matrix, we first need to understand what an identity matrix is.
An identity matrix is a special type of matrix in which all the elements on the main diagonal are 1, and all other elements are 0. In the context of a 2x2 identity matrix, it is represented as
[tex]\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Comparing this with the given matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
we observe that for this matrix to be equivalent to the identity matrix, the entries on the main diagonal must both be equal to 1. Therefore, we need both instances of [tex]\( a \)[/tex] in the matrix to be 1.
This means:
[tex]\[ a = 1 \][/tex]
So, the value of [tex]\( a \)[/tex] that makes the given matrix an identity matrix is [tex]\( \boxed{1} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.