Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\( 16x^2 + 9 = 0 \)[/tex], let's go through the steps one by one.
1. Set up the equation:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
2. Isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
Subtract 9 from both sides to get:
[tex]\[ 16x^2 = -9 \][/tex]
3. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by 16:
[tex]\[ x^2 = \frac{-9}{16} \][/tex]
4. Introduce the imaginary unit [tex]\( i \)[/tex]:
Since we have a negative number on the right side of the equation, this implies the solution will involve the imaginary unit [tex]\( i \)[/tex]. Recall that [tex]\( \sqrt{-1} = i \)[/tex].
5. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{\frac{-9}{16}} \][/tex]
[tex]\[ x = \pm \frac{\sqrt{-9}}{\sqrt{16}} \][/tex]
6. Simplify the square root expression:
[tex]\[ \sqrt{-9} = \sqrt{-1 \cdot 9} = \sqrt{-1} \cdot \sqrt{9} = i \cdot 3 = 3i \][/tex]
[tex]\[ \sqrt{16} = 4 \][/tex]
Hence,
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^2 + 9 = 0 \)[/tex] are:
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
In numeric form, these roots are [tex]\( 0.75i \)[/tex] and [tex]\( -0.75i \)[/tex].
So, the answers are:
[tex]\[ x = \frac{3i}{4} \][/tex]
and
[tex]\[ x = -\frac{3i}{4} \][/tex]
1. Set up the equation:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
2. Isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
Subtract 9 from both sides to get:
[tex]\[ 16x^2 = -9 \][/tex]
3. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by 16:
[tex]\[ x^2 = \frac{-9}{16} \][/tex]
4. Introduce the imaginary unit [tex]\( i \)[/tex]:
Since we have a negative number on the right side of the equation, this implies the solution will involve the imaginary unit [tex]\( i \)[/tex]. Recall that [tex]\( \sqrt{-1} = i \)[/tex].
5. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{\frac{-9}{16}} \][/tex]
[tex]\[ x = \pm \frac{\sqrt{-9}}{\sqrt{16}} \][/tex]
6. Simplify the square root expression:
[tex]\[ \sqrt{-9} = \sqrt{-1 \cdot 9} = \sqrt{-1} \cdot \sqrt{9} = i \cdot 3 = 3i \][/tex]
[tex]\[ \sqrt{16} = 4 \][/tex]
Hence,
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^2 + 9 = 0 \)[/tex] are:
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
In numeric form, these roots are [tex]\( 0.75i \)[/tex] and [tex]\( -0.75i \)[/tex].
So, the answers are:
[tex]\[ x = \frac{3i}{4} \][/tex]
and
[tex]\[ x = -\frac{3i}{4} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.