Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to follow the provided steps and explanations:
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.