Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the remainder when dividing the polynomial [tex]\( x^3 - 7x + 6 \)[/tex] by [tex]\( x - 1 \)[/tex], we can use polynomial division. Here are the detailed steps of the process:
1. Identify the polynomial and the divisor:
- The polynomial (dividend) is [tex]\( x^3 - 7x + 6 \)[/tex].
- The divisor is [tex]\( x - 1 \)[/tex].
2. Set up the division:
- Divide [tex]\( x^3 \)[/tex] (the leading term of the dividend) by [tex]\( x \)[/tex] (the leading term of the divisor).
3. First division step:
- [tex]\( x^3 \div x = x^2 \)[/tex].
- Multiply [tex]\( x^2 \)[/tex] by the entire divisor [tex]\( (x - 1) \)[/tex]: [tex]\( x^2(x - 1) = x^3 - x^2 \)[/tex].
4. Subtract the result from the original polynomial:
- [tex]\( (x^3 - 7x + 6) - (x^3 - x^2) = -x^2 - 7x + 6 \)[/tex].
5. Repeat with the new polynomial:
- Divide [tex]\( -x^2 \)[/tex] (the new leading term) by [tex]\( x \)[/tex]: [tex]\( -x^2 \div x = -x \)[/tex].
- Multiply [tex]\( -x \)[/tex] by the divisor [tex]\( (x - 1) \)[/tex]: [tex]\( -x(x - 1) = -x^2 + x \)[/tex].
- Subtract the result: [tex]\( (-x^2 - 7x + 6) - (-x^2 + x) = -8x + 6 \)[/tex].
6. Repeat with the new polynomial:
- Divide [tex]\( -8x \)[/tex] by [tex]\( x \)[/tex]: [tex]\( -8x \div x = -8 \)[/tex].
- Multiply [tex]\( -8 \)[/tex] by the divisor [tex]\( (x - 1) \)[/tex]: [tex]\( -8(x - 1) = -8x + 8 \)[/tex].
- Subtract the result: [tex]\( (-8x + 6) - (-8x + 8) = -2 \)[/tex].
7. Checking the factor condition:
- Since [tex]\( x-1 \)[/tex] is stated to be a factor of [tex]\( x^3 - 7x + 6 \)[/tex], the remainder should be zero when the polynomial is exactly divide by [tex]\( x-1 \)[/tex].
8. Final verification:
- The quotient obtained is [tex]\( x^2 + x - 6 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
Therefore, the remainder when [tex]\( x^3 - 7x + 6 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\( 0 \)[/tex].
1. Identify the polynomial and the divisor:
- The polynomial (dividend) is [tex]\( x^3 - 7x + 6 \)[/tex].
- The divisor is [tex]\( x - 1 \)[/tex].
2. Set up the division:
- Divide [tex]\( x^3 \)[/tex] (the leading term of the dividend) by [tex]\( x \)[/tex] (the leading term of the divisor).
3. First division step:
- [tex]\( x^3 \div x = x^2 \)[/tex].
- Multiply [tex]\( x^2 \)[/tex] by the entire divisor [tex]\( (x - 1) \)[/tex]: [tex]\( x^2(x - 1) = x^3 - x^2 \)[/tex].
4. Subtract the result from the original polynomial:
- [tex]\( (x^3 - 7x + 6) - (x^3 - x^2) = -x^2 - 7x + 6 \)[/tex].
5. Repeat with the new polynomial:
- Divide [tex]\( -x^2 \)[/tex] (the new leading term) by [tex]\( x \)[/tex]: [tex]\( -x^2 \div x = -x \)[/tex].
- Multiply [tex]\( -x \)[/tex] by the divisor [tex]\( (x - 1) \)[/tex]: [tex]\( -x(x - 1) = -x^2 + x \)[/tex].
- Subtract the result: [tex]\( (-x^2 - 7x + 6) - (-x^2 + x) = -8x + 6 \)[/tex].
6. Repeat with the new polynomial:
- Divide [tex]\( -8x \)[/tex] by [tex]\( x \)[/tex]: [tex]\( -8x \div x = -8 \)[/tex].
- Multiply [tex]\( -8 \)[/tex] by the divisor [tex]\( (x - 1) \)[/tex]: [tex]\( -8(x - 1) = -8x + 8 \)[/tex].
- Subtract the result: [tex]\( (-8x + 6) - (-8x + 8) = -2 \)[/tex].
7. Checking the factor condition:
- Since [tex]\( x-1 \)[/tex] is stated to be a factor of [tex]\( x^3 - 7x + 6 \)[/tex], the remainder should be zero when the polynomial is exactly divide by [tex]\( x-1 \)[/tex].
8. Final verification:
- The quotient obtained is [tex]\( x^2 + x - 6 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
Therefore, the remainder when [tex]\( x^3 - 7x + 6 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\( 0 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.