Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's find the translated function step-by-step.
1. Translation 4 units to the right:
- When a function [tex]\(f(x)\)[/tex] is translated [tex]\(c\)[/tex] units to the right, the transformed function becomes [tex]\(f(x - c)\)[/tex].
- For [tex]\(f(x) = x^2\)[/tex] and [tex]\(c = 4\)[/tex], the transformed function is [tex]\(f(x - 4) = (x - 4)^2\)[/tex].
2. Translation 9 units up:
- When a function is then translated [tex]\(d\)[/tex] units upwards, you add [tex]\(d\)[/tex] to the whole function.
- For the function [tex]\((x - 4)^2\)[/tex] and [tex]\(d = 9\)[/tex], the final transformed function is [tex]\((x - 4)^2 + 9\)[/tex].
So, putting it all together:
- Translating [tex]\(f(x) = x^2\)[/tex] 4 units to the right yields [tex]\((x - 4)^2\)[/tex].
- Translating [tex]\((x - 4)^2\)[/tex] 9 units up gives [tex]\((x - 4)^2 + 9\)[/tex].
Thus, the function [tex]\(g(x)\)[/tex] that represents this transformation is:
[tex]\[ g(x) = (x - 4)^2 + 9 \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{g(x) = (x - 4)^2 + 9} \][/tex]
1. Translation 4 units to the right:
- When a function [tex]\(f(x)\)[/tex] is translated [tex]\(c\)[/tex] units to the right, the transformed function becomes [tex]\(f(x - c)\)[/tex].
- For [tex]\(f(x) = x^2\)[/tex] and [tex]\(c = 4\)[/tex], the transformed function is [tex]\(f(x - 4) = (x - 4)^2\)[/tex].
2. Translation 9 units up:
- When a function is then translated [tex]\(d\)[/tex] units upwards, you add [tex]\(d\)[/tex] to the whole function.
- For the function [tex]\((x - 4)^2\)[/tex] and [tex]\(d = 9\)[/tex], the final transformed function is [tex]\((x - 4)^2 + 9\)[/tex].
So, putting it all together:
- Translating [tex]\(f(x) = x^2\)[/tex] 4 units to the right yields [tex]\((x - 4)^2\)[/tex].
- Translating [tex]\((x - 4)^2\)[/tex] 9 units up gives [tex]\((x - 4)^2 + 9\)[/tex].
Thus, the function [tex]\(g(x)\)[/tex] that represents this transformation is:
[tex]\[ g(x) = (x - 4)^2 + 9 \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{g(x) = (x - 4)^2 + 9} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.