At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the equation of the regression line, we need to find the slope ([tex]\( b \)[/tex]) and y-intercept ([tex]\( a \)[/tex]) for the line equation [tex]\(\hat{y} = b x + a\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.