Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(\log _3\left(\frac{1}{81}\right)=y\)[/tex], we need to determine the value of [tex]\(y\)[/tex] that satisfies the logarithmic equation. Here are the detailed steps:
1. Rewrite the logarithmic equation in its exponential form:
[tex]\[ \log _3\left(\frac{1}{81}\right) = y \quad \text{implies} \quad 3^y = \frac{1}{81} \][/tex]
2. Recognize that [tex]\(81\)[/tex] is a power of [tex]\(3\)[/tex]. Specifically:
[tex]\[ 81 = 3^4 \][/tex]
3. Substitute this expression into the equation:
[tex]\[ 3^y = \frac{1}{3^4} \][/tex]
4. Recall that [tex]\(\frac{1}{3^4}\)[/tex] can be written as [tex]\(3^{-4}\)[/tex]. Thus:
[tex]\[ 3^y = 3^{-4} \][/tex]
5. Since the bases are the same, we can equate the exponents:
[tex]\[ y = -4 \][/tex]
Therefore, the value of [tex]\(y\)[/tex] that satisfies [tex]\(\log _3\left(\frac{1}{81}\right)=y\)[/tex] is [tex]\(\boxed{-4}\)[/tex].
1. Rewrite the logarithmic equation in its exponential form:
[tex]\[ \log _3\left(\frac{1}{81}\right) = y \quad \text{implies} \quad 3^y = \frac{1}{81} \][/tex]
2. Recognize that [tex]\(81\)[/tex] is a power of [tex]\(3\)[/tex]. Specifically:
[tex]\[ 81 = 3^4 \][/tex]
3. Substitute this expression into the equation:
[tex]\[ 3^y = \frac{1}{3^4} \][/tex]
4. Recall that [tex]\(\frac{1}{3^4}\)[/tex] can be written as [tex]\(3^{-4}\)[/tex]. Thus:
[tex]\[ 3^y = 3^{-4} \][/tex]
5. Since the bases are the same, we can equate the exponents:
[tex]\[ y = -4 \][/tex]
Therefore, the value of [tex]\(y\)[/tex] that satisfies [tex]\(\log _3\left(\frac{1}{81}\right)=y\)[/tex] is [tex]\(\boxed{-4}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.