Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's delve into each transformation step-by-step, using the original function [tex]\( y = \log x \)[/tex]:
### a) Equation A:
Equation: [tex]\( y = -3 \log x \)[/tex]
Justification:
For the original function [tex]\( y = \log x \)[/tex], the point [tex]\((10, 1)\)[/tex] means that [tex]\(\log 10 = 1\)[/tex]. The transformation applied here takes the y-coordinate of the point and multiplies it by [tex]\(-3\)[/tex]. Hence, the new point is [tex]\((10, -3)\)[/tex].
Thus, the transformation applied to the original function [tex]\( y = \log x \)[/tex] is simply multiplying the entire function by [tex]\(-3\)[/tex]. This gives us:
[tex]\[ y = -3 \log x \][/tex]
### b) Equation B:
Equation: [tex]\( y = \log (4 - x) \)[/tex]
Justification:
The domain of the original function [tex]\( y = \log x \)[/tex] is [tex]\( x > 0 \)[/tex]. For the transformed function, the domain is given as [tex]\( x < 4 \)[/tex]. To achieve this, we need to shift the function horizontally to the right by 4 units and reflect it over the y-axis.
The horizontal shift of 4 units to the right for [tex]\( y = \log x \)[/tex] would normally be represented as [tex]\( y = \log (x - 4) \)[/tex]. To reflect the x-values and achieve the domain requirement [tex]\( x < 4 \)[/tex], we use [tex]\( y = \log (4 - x) \)[/tex].
So, the transformed equation is:
[tex]\[ y = \log (4 - x) \][/tex]
### c) Equation C:
Equation: [tex]\( y = -3 \log (2x) \)[/tex]
Justification:
The mapping notation [tex]\((x, y) \rightarrow \left(\frac{1}{2}x, -3y\right)\)[/tex] indicates two transformations:
- The x-coordinate is scaled by [tex]\(\frac{1}{2}\)[/tex], meaning each input x is transformed to [tex]\(\frac{x}{2}\)[/tex].
- The y-coordinate is scaled by [tex]\(-3\)[/tex], implying the output is multiplied by [tex]\(-3\)[/tex].
Firstly, for the input [tex]\( x \rightarrow 2x \)[/tex], it means every x value in the original function should be modified to [tex]\(2x\)[/tex] (since [tex]\(\frac{1}{2}x\)[/tex] reversed would be [tex]\(2x\)[/tex]).
Secondly, resulting y values are scaled by [tex]\(-3\)[/tex], hence:
[tex]\[ y = -3 \log (2x) \][/tex]
This results in the final transformed equation as:
[tex]\[ y = -3 \log (2x) \][/tex]
### a) Equation A:
Equation: [tex]\( y = -3 \log x \)[/tex]
Justification:
For the original function [tex]\( y = \log x \)[/tex], the point [tex]\((10, 1)\)[/tex] means that [tex]\(\log 10 = 1\)[/tex]. The transformation applied here takes the y-coordinate of the point and multiplies it by [tex]\(-3\)[/tex]. Hence, the new point is [tex]\((10, -3)\)[/tex].
Thus, the transformation applied to the original function [tex]\( y = \log x \)[/tex] is simply multiplying the entire function by [tex]\(-3\)[/tex]. This gives us:
[tex]\[ y = -3 \log x \][/tex]
### b) Equation B:
Equation: [tex]\( y = \log (4 - x) \)[/tex]
Justification:
The domain of the original function [tex]\( y = \log x \)[/tex] is [tex]\( x > 0 \)[/tex]. For the transformed function, the domain is given as [tex]\( x < 4 \)[/tex]. To achieve this, we need to shift the function horizontally to the right by 4 units and reflect it over the y-axis.
The horizontal shift of 4 units to the right for [tex]\( y = \log x \)[/tex] would normally be represented as [tex]\( y = \log (x - 4) \)[/tex]. To reflect the x-values and achieve the domain requirement [tex]\( x < 4 \)[/tex], we use [tex]\( y = \log (4 - x) \)[/tex].
So, the transformed equation is:
[tex]\[ y = \log (4 - x) \][/tex]
### c) Equation C:
Equation: [tex]\( y = -3 \log (2x) \)[/tex]
Justification:
The mapping notation [tex]\((x, y) \rightarrow \left(\frac{1}{2}x, -3y\right)\)[/tex] indicates two transformations:
- The x-coordinate is scaled by [tex]\(\frac{1}{2}\)[/tex], meaning each input x is transformed to [tex]\(\frac{x}{2}\)[/tex].
- The y-coordinate is scaled by [tex]\(-3\)[/tex], implying the output is multiplied by [tex]\(-3\)[/tex].
Firstly, for the input [tex]\( x \rightarrow 2x \)[/tex], it means every x value in the original function should be modified to [tex]\(2x\)[/tex] (since [tex]\(\frac{1}{2}x\)[/tex] reversed would be [tex]\(2x\)[/tex]).
Secondly, resulting y values are scaled by [tex]\(-3\)[/tex], hence:
[tex]\[ y = -3 \log (2x) \][/tex]
This results in the final transformed equation as:
[tex]\[ y = -3 \log (2x) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.