At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's break down the solution step-by-step to determine the external pressure on the upper surface of the liquid.
1. Gathering the Given Data:
- The area of the piston [tex]\( A = 1 \, \text{m}^2 \)[/tex]
- The load or mass on the piston [tex]\( m = 350 \, \text{kg} \)[/tex]
2. Acceleration Due to Gravity:
- The standard value for gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. Calculating the Force Exerted by the Load:
- Using Newton's second law, we calculate the force:
[tex]\[ F = m \cdot g \][/tex]
- Plugging in the values:
[tex]\[ F = 350 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 3430 \, \text{N} \][/tex]
4. Calculating the Pressure:
- Pressure [tex]\( P \)[/tex] is defined as force per unit area. Thus,
[tex]\[ P = \frac{F}{A} \][/tex]
- With the given area,
[tex]\[ P = \frac{3430 \, \text{N}}{1 \, \text{m}^2} = 3430 \, \text{Pa} \][/tex]
5. Converting Pascals to Kilopascals:
- [tex]\( 1 \, \text{kPa} = 1000 \, \text{Pa} \)[/tex]
- Therefore, to convert the pressure calculated in Pascals to kilopascals:
[tex]\[ P_{\text{kPa}} = \frac{3430 \, \text{Pa}}{1000} = 3.43 \, \text{kPa} \][/tex]
Putting all these steps together, the pressure on the upper surface of the liquid is [tex]\( 3.43 \, \text{kPa} \)[/tex].
Therefore, the best answer is:
D. 3.43 kPa
1. Gathering the Given Data:
- The area of the piston [tex]\( A = 1 \, \text{m}^2 \)[/tex]
- The load or mass on the piston [tex]\( m = 350 \, \text{kg} \)[/tex]
2. Acceleration Due to Gravity:
- The standard value for gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. Calculating the Force Exerted by the Load:
- Using Newton's second law, we calculate the force:
[tex]\[ F = m \cdot g \][/tex]
- Plugging in the values:
[tex]\[ F = 350 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 3430 \, \text{N} \][/tex]
4. Calculating the Pressure:
- Pressure [tex]\( P \)[/tex] is defined as force per unit area. Thus,
[tex]\[ P = \frac{F}{A} \][/tex]
- With the given area,
[tex]\[ P = \frac{3430 \, \text{N}}{1 \, \text{m}^2} = 3430 \, \text{Pa} \][/tex]
5. Converting Pascals to Kilopascals:
- [tex]\( 1 \, \text{kPa} = 1000 \, \text{Pa} \)[/tex]
- Therefore, to convert the pressure calculated in Pascals to kilopascals:
[tex]\[ P_{\text{kPa}} = \frac{3430 \, \text{Pa}}{1000} = 3.43 \, \text{kPa} \][/tex]
Putting all these steps together, the pressure on the upper surface of the liquid is [tex]\( 3.43 \, \text{kPa} \)[/tex].
Therefore, the best answer is:
D. 3.43 kPa
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.