Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the probability that you will get "heads" no more than once out of 3 flips, we need to consider the scenarios in which you get 0 or 1 head. We can break this down into two parts: the probability of getting 0 heads and the probability of getting 1 head.
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.