Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\( P(-2) \)[/tex] for [tex]\( P(x) = -2x^3 - 4x^2 - 9 \)[/tex] using the remainder theorem, we follow these steps:
1. Identify the polynomial:
[tex]\[ P(x) = -2x^3 - 4x^2 - 9 \][/tex]
2. Use Polynomial Long Division (or Synthetic Division):
We need to divide [tex]\( P(x) \)[/tex] by [tex]\( (x + 2) \)[/tex] to find the quotient and the remainder.
We start the division:
[tex]\[ \frac{-2x^3 - 4x^2 - 9}{x + 2} \][/tex]
3. Perform the division step-by-step:
- The leading term of the quotient is determined by dividing the leading term of the dividend by the leading term of the divisor:
[tex]\[ -2x^3 \div x = -2x^2 \][/tex]
- Multiply the entire divisor by this leading term:
[tex]\[ (-2x^2)(x + 2) = -2x^3 - 4x^2 \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (-2x^3 - 4x^2 - 9) - (-2x^3 - 4x^2) = -9 \][/tex]
At this point, the remainder is [tex]\(-9\)[/tex], and we have no more terms to divide.
So, the quotient is:
[tex]\[ -2x^2 \][/tex]
And the remainder is:
[tex]\[ -9 \][/tex]
4. Summary of Division:
The quotient of the division is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
The remainder of the division is:
[tex]\[ \text{Remainder} = -9 \][/tex]
5. Apply the Remainder Theorem:
According to the Remainder Theorem, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( x + 2 \)[/tex] is [tex]\( P(-2) \)[/tex].
Therefore,
[tex]\[ P(-2) = -9 \][/tex]
Thus, the final answer is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
[tex]\[ \text{Remainder} = -9 \][/tex]
[tex]\[ P(-2) = -9 \][/tex]
1. Identify the polynomial:
[tex]\[ P(x) = -2x^3 - 4x^2 - 9 \][/tex]
2. Use Polynomial Long Division (or Synthetic Division):
We need to divide [tex]\( P(x) \)[/tex] by [tex]\( (x + 2) \)[/tex] to find the quotient and the remainder.
We start the division:
[tex]\[ \frac{-2x^3 - 4x^2 - 9}{x + 2} \][/tex]
3. Perform the division step-by-step:
- The leading term of the quotient is determined by dividing the leading term of the dividend by the leading term of the divisor:
[tex]\[ -2x^3 \div x = -2x^2 \][/tex]
- Multiply the entire divisor by this leading term:
[tex]\[ (-2x^2)(x + 2) = -2x^3 - 4x^2 \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (-2x^3 - 4x^2 - 9) - (-2x^3 - 4x^2) = -9 \][/tex]
At this point, the remainder is [tex]\(-9\)[/tex], and we have no more terms to divide.
So, the quotient is:
[tex]\[ -2x^2 \][/tex]
And the remainder is:
[tex]\[ -9 \][/tex]
4. Summary of Division:
The quotient of the division is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
The remainder of the division is:
[tex]\[ \text{Remainder} = -9 \][/tex]
5. Apply the Remainder Theorem:
According to the Remainder Theorem, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( x + 2 \)[/tex] is [tex]\( P(-2) \)[/tex].
Therefore,
[tex]\[ P(-2) = -9 \][/tex]
Thus, the final answer is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
[tex]\[ \text{Remainder} = -9 \][/tex]
[tex]\[ P(-2) = -9 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.