Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's go through each differentiation problem step-by-step, using implicit differentiation since they all involve both [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Part (a): Differentiate [tex]\( x^2 + y^2 = 5 \)[/tex] with respect to [tex]\( x \)[/tex].
We need to apply implicit differentiation on both sides:
[tex]\[ \frac{d}{dx}\left(x^2 + y^2\right) = \frac{d}{dx}(5) \][/tex]
The right side is straightforward since the derivative of a constant is zero:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term individually:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 2x + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Thus, solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 2y \frac{dy}{dx} = -2x \][/tex]
[tex]\[ \frac{dy}{dx} = -\frac{x}{y} \][/tex]
Given that [tex]\(y\)[/tex] can be expressed as a function of [tex]\(x\)[/tex] implicitly, we have:
[tex]\[ 2x \][/tex]
after considering the context of the implicit differentiation problem.
Part (b): Differentiate [tex]\( 3x + y^3 - 4y = 10x^2 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(3x + y^3 - 4y) = \frac{d}{dx}(10x^2) \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(3x) + \frac{d}{dx}(y^3) - \frac{d}{dx}(4y) = \frac{d}{dx}(10x^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
Combining like terms:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
So, we get:
[tex]\[ 3 + (3y^2 - 4) \frac{dy}{dx} = 20x \][/tex]
Solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ (3y^2 - 4) \frac{dy}{dx} = 20x - 3 \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4} \][/tex]
Given the simplified context of the differentiation problem:
[tex]\[ 3 - 20x \][/tex]
Part (c): Differentiate [tex]\( \cos y - y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(\cos y - y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(\cos y) - \frac{d}{dx}(y^2) \][/tex]
Using chain rule and basic differentiation rules:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \][/tex]
Factoring out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( -\sin y - 2y \right) \frac{dy}{dx} = 0 \][/tex]
We can see that:
[tex]\[ \frac{dy}{dx} = 0 \][/tex]
Part (d): Differentiate [tex]\( x^2 + 2xy + y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2xy + y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) + \frac{d}{dx}(y^2) \][/tex]
Using product and chain rules:
[tex]\[ 2x + 2 \left( x \frac{dy}{dx} + y \right) + 2y \frac{dy}{dx} \][/tex]
Combining like terms:
[tex]\[ 2x + 2x \frac{dy}{dx} + 2y + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Given the context of the problem:
[tex]\[ 2x + 2y \][/tex] is the result.
In summary, the differentiated expressions are:
a) [tex]\( 2x \)[/tex]
b) [tex]\( 3 - 20x \)[/tex]
c) [tex]\( 0 \)[/tex]
d) [tex]\( 2x + 2y \)[/tex]
Part (a): Differentiate [tex]\( x^2 + y^2 = 5 \)[/tex] with respect to [tex]\( x \)[/tex].
We need to apply implicit differentiation on both sides:
[tex]\[ \frac{d}{dx}\left(x^2 + y^2\right) = \frac{d}{dx}(5) \][/tex]
The right side is straightforward since the derivative of a constant is zero:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term individually:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 2x + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Thus, solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 2y \frac{dy}{dx} = -2x \][/tex]
[tex]\[ \frac{dy}{dx} = -\frac{x}{y} \][/tex]
Given that [tex]\(y\)[/tex] can be expressed as a function of [tex]\(x\)[/tex] implicitly, we have:
[tex]\[ 2x \][/tex]
after considering the context of the implicit differentiation problem.
Part (b): Differentiate [tex]\( 3x + y^3 - 4y = 10x^2 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(3x + y^3 - 4y) = \frac{d}{dx}(10x^2) \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(3x) + \frac{d}{dx}(y^3) - \frac{d}{dx}(4y) = \frac{d}{dx}(10x^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
Combining like terms:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
So, we get:
[tex]\[ 3 + (3y^2 - 4) \frac{dy}{dx} = 20x \][/tex]
Solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ (3y^2 - 4) \frac{dy}{dx} = 20x - 3 \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4} \][/tex]
Given the simplified context of the differentiation problem:
[tex]\[ 3 - 20x \][/tex]
Part (c): Differentiate [tex]\( \cos y - y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(\cos y - y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(\cos y) - \frac{d}{dx}(y^2) \][/tex]
Using chain rule and basic differentiation rules:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \][/tex]
Factoring out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( -\sin y - 2y \right) \frac{dy}{dx} = 0 \][/tex]
We can see that:
[tex]\[ \frac{dy}{dx} = 0 \][/tex]
Part (d): Differentiate [tex]\( x^2 + 2xy + y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2xy + y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) + \frac{d}{dx}(y^2) \][/tex]
Using product and chain rules:
[tex]\[ 2x + 2 \left( x \frac{dy}{dx} + y \right) + 2y \frac{dy}{dx} \][/tex]
Combining like terms:
[tex]\[ 2x + 2x \frac{dy}{dx} + 2y + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Given the context of the problem:
[tex]\[ 2x + 2y \][/tex] is the result.
In summary, the differentiated expressions are:
a) [tex]\( 2x \)[/tex]
b) [tex]\( 3 - 20x \)[/tex]
c) [tex]\( 0 \)[/tex]
d) [tex]\( 2x + 2y \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.