Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the equation of a line that is parallel to a given line and passes through a specific point, we will follow these steps:
1. Identify the slope of the given line:
The given line has the equation [tex]\( y = \frac{1}{5}x + 4 \)[/tex]. The slope of this line, [tex]\( m \)[/tex], is the coefficient of [tex]\( x \)[/tex], which is [tex]\( \frac{1}{5} \)[/tex].
2. Determine the slope of the parallel line:
Parallel lines have the same slope. Therefore, the slope of the line we need to find is also [tex]\( \frac{1}{5} \)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
Here, we are given the point [tex]\((-2, 2)\)[/tex] and the slope [tex]\( m = \frac{1}{5} \)[/tex].
So, we substitute these values into the point-slope form:
[tex]\[ y - 2 = \frac{1}{5}(x + 2) \][/tex]
4. Solve for [tex]\( y \)[/tex] to get the slope-intercept form:
Simplify the equation:
[tex]\[ y - 2 = \frac{1}{5}x + \frac{1}{5} \cdot 2 \][/tex]
[tex]\[ y - 2 = \frac{1}{5}x + \frac{2}{5} \][/tex]
Add 2 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{5}x + \frac{2}{5} + 2 \][/tex]
[tex]\[ y = \frac{1}{5}x + \frac{2}{5} + \frac{10}{5} \][/tex]
[tex]\[ y = \frac{1}{5}x + \frac{12}{5} \][/tex]
5. Compare with the given choices:
We need to determine which of the provided choices matches [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex]:
- [tex]\( y = \frac{1}{5}x + 4 \)[/tex]
- [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex]
- [tex]\( y = -5x + 4 \)[/tex]
- [tex]\( y = -5x + \frac{12}{5} \)[/tex]
The equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex].
Comparing this with the choices given, we find that the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. Identify the slope of the given line:
The given line has the equation [tex]\( y = \frac{1}{5}x + 4 \)[/tex]. The slope of this line, [tex]\( m \)[/tex], is the coefficient of [tex]\( x \)[/tex], which is [tex]\( \frac{1}{5} \)[/tex].
2. Determine the slope of the parallel line:
Parallel lines have the same slope. Therefore, the slope of the line we need to find is also [tex]\( \frac{1}{5} \)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
Here, we are given the point [tex]\((-2, 2)\)[/tex] and the slope [tex]\( m = \frac{1}{5} \)[/tex].
So, we substitute these values into the point-slope form:
[tex]\[ y - 2 = \frac{1}{5}(x + 2) \][/tex]
4. Solve for [tex]\( y \)[/tex] to get the slope-intercept form:
Simplify the equation:
[tex]\[ y - 2 = \frac{1}{5}x + \frac{1}{5} \cdot 2 \][/tex]
[tex]\[ y - 2 = \frac{1}{5}x + \frac{2}{5} \][/tex]
Add 2 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{5}x + \frac{2}{5} + 2 \][/tex]
[tex]\[ y = \frac{1}{5}x + \frac{2}{5} + \frac{10}{5} \][/tex]
[tex]\[ y = \frac{1}{5}x + \frac{12}{5} \][/tex]
5. Compare with the given choices:
We need to determine which of the provided choices matches [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex]:
- [tex]\( y = \frac{1}{5}x + 4 \)[/tex]
- [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex]
- [tex]\( y = -5x + 4 \)[/tex]
- [tex]\( y = -5x + \frac{12}{5} \)[/tex]
The equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is [tex]\( y = \frac{1}{5}x + \frac{12}{5} \)[/tex].
Comparing this with the choices given, we find that the correct answer is:
[tex]\[ \boxed{2} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.