Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of a line that is parallel to a given line and passes through a specific point, we need to follow several steps:
1. Identify the slope of the given line:
The given line is [tex]\( x + 2y = 4 \)[/tex].
Let's put this equation in slope-intercept form ( [tex]\( y = mx + b \)[/tex] ), where [tex]\( m \)[/tex] is the slope:
[tex]\[ x + 2y = 4 \implies 2y = -x + 4 \implies y = -\frac{1}{2}x + 2 \][/tex]
So, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Use the slope and the given point to find the new line:
A line parallel to the given line will have the same slope, which is [tex]\( -\frac{1}{2} \)[/tex]. We need the equation of the line passing through the point [tex]\( (2, 3) \)[/tex].
3. Point-slope form:
Use the point-slope form of the line equation [tex]\( (y - y_1) = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is the point [tex]\( (2, 3) \)[/tex]:
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
4. Simplify the equation:
Distribute [tex]\( -\frac{1}{2} \)[/tex]:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
5. Convert to the standard form:
Multiply both sides by 2 to clear the fraction:
[tex]\[ 2y = -x + 8 \][/tex]
Move [tex]\( x \)[/tex] to the left side:
[tex]\[ x + 2y = 8 \][/tex]
So, the equation of the line parallel to [tex]\( x + 2y = 4 \)[/tex] and passing through the point [tex]\( (2, 3) \)[/tex] is:
[tex]\[ x + 2y = 8 \][/tex]
1. Identify the slope of the given line:
The given line is [tex]\( x + 2y = 4 \)[/tex].
Let's put this equation in slope-intercept form ( [tex]\( y = mx + b \)[/tex] ), where [tex]\( m \)[/tex] is the slope:
[tex]\[ x + 2y = 4 \implies 2y = -x + 4 \implies y = -\frac{1}{2}x + 2 \][/tex]
So, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Use the slope and the given point to find the new line:
A line parallel to the given line will have the same slope, which is [tex]\( -\frac{1}{2} \)[/tex]. We need the equation of the line passing through the point [tex]\( (2, 3) \)[/tex].
3. Point-slope form:
Use the point-slope form of the line equation [tex]\( (y - y_1) = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is the point [tex]\( (2, 3) \)[/tex]:
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
4. Simplify the equation:
Distribute [tex]\( -\frac{1}{2} \)[/tex]:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
Add 3 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
5. Convert to the standard form:
Multiply both sides by 2 to clear the fraction:
[tex]\[ 2y = -x + 8 \][/tex]
Move [tex]\( x \)[/tex] to the left side:
[tex]\[ x + 2y = 8 \][/tex]
So, the equation of the line parallel to [tex]\( x + 2y = 4 \)[/tex] and passing through the point [tex]\( (2, 3) \)[/tex] is:
[tex]\[ x + 2y = 8 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.