At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the correct formula for finding the [tex]\(n\)[/tex]th term of a geometric sequence, we need to follow these steps:
1. Identify the first term ([tex]\(a_1\)[/tex]): The first term of the sequence is given as 8.
2. Identify the common ratio ([tex]\(r\)[/tex]): The common ratio of this sequence is given as -3.
3. Recall the general formula for a geometric sequence: The general formula for the [tex]\(n\)[/tex]th term of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
Now, substitute the given values into the general formula:
4. Substitute [tex]\(a_1 = 8\)[/tex] and [tex]\(r = -3\)[/tex] into the formula:
[tex]\[ a_n = 8 \cdot (-3)^{n-1} \][/tex]
By substituting the specific values for the first term and the common ratio into the general formula for the [tex]\(n\)[/tex]th term of a geometric sequence, we get:
[tex]\[ a_n = 8 \cdot (-3)^{n-1} \][/tex]
Thus, the correct formula to find the [tex]\(n\)[/tex]th term of this geometric sequence is:
[tex]\[ \boxed{a_n = 8 \cdot (-3)^{n-1}} \][/tex]
1. Identify the first term ([tex]\(a_1\)[/tex]): The first term of the sequence is given as 8.
2. Identify the common ratio ([tex]\(r\)[/tex]): The common ratio of this sequence is given as -3.
3. Recall the general formula for a geometric sequence: The general formula for the [tex]\(n\)[/tex]th term of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
Now, substitute the given values into the general formula:
4. Substitute [tex]\(a_1 = 8\)[/tex] and [tex]\(r = -3\)[/tex] into the formula:
[tex]\[ a_n = 8 \cdot (-3)^{n-1} \][/tex]
By substituting the specific values for the first term and the common ratio into the general formula for the [tex]\(n\)[/tex]th term of a geometric sequence, we get:
[tex]\[ a_n = 8 \cdot (-3)^{n-1} \][/tex]
Thus, the correct formula to find the [tex]\(n\)[/tex]th term of this geometric sequence is:
[tex]\[ \boxed{a_n = 8 \cdot (-3)^{n-1}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.