Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the intersection point of the diagonals of a square, you can use the midpoint formula. This is because the diagonals of a square bisect each other at their midpoint. Given the points [tex]\( A = (3, 2) \)[/tex], [tex]\( B = (-1, 1) \)[/tex], [tex]\( C = (0, -3) \)[/tex], and [tex]\( D = (4, -2) \)[/tex], we first calculate the midpoints of the diagonals [tex]\( AC \)[/tex] and [tex]\( BD \)[/tex].
### Step 1: Calculate the midpoint of diagonal [tex]\( AC \)[/tex]
The midpoint [tex]\( M_{AC} \)[/tex] of diagonal [tex]\( AC \)[/tex] is given by:
[tex]\[ M_{AC} = \left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right) \][/tex]
Substitute the coordinates of points [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ M_{AC} = \left( \frac{3 + 0}{2}, \frac{2 + (-3)}{2} \right) \][/tex]
[tex]\[ M_{AC} = \left( \frac{3}{2}, \frac{-1}{2} \right) \][/tex]
[tex]\[ M_{AC} = (1.5, -0.5) \][/tex]
### Step 2: Calculate the midpoint of diagonal [tex]\( BD \)[/tex]
The midpoint [tex]\( M_{BD} \)[/tex] of diagonal [tex]\( BD \)[/tex] is given by:
[tex]\[ M_{BD} = \left( \frac{x_2 + x_4}{2}, \frac{y_2 + y_4}{2} \right) \][/tex]
Substitute the coordinates of points [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ M_{BD} = \left( \frac{-1 + 4}{2}, \frac{1 + (-2)}{2} \right) \][/tex]
[tex]\[ M_{BD} = \left( \frac{3}{2}, \frac{-1}{2} \right) \][/tex]
[tex]\[ M_{BD} = (1.5, -0.5) \][/tex]
### Step 3: Intersection point of the diagonals
The intersection point of the diagonals of the square is where the two midpoints calculated above coincide. From our calculations, both [tex]\( M_{AC} \)[/tex] and [tex]\( M_{BD} \)[/tex] are the same:
[tex]\[ (1.5, -0.5) \][/tex]
Therefore, the coordinates of the point where the diagonals intersect are:
[tex]\[ \boxed{(1.5, -0.5)} \][/tex]
### Step 1: Calculate the midpoint of diagonal [tex]\( AC \)[/tex]
The midpoint [tex]\( M_{AC} \)[/tex] of diagonal [tex]\( AC \)[/tex] is given by:
[tex]\[ M_{AC} = \left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right) \][/tex]
Substitute the coordinates of points [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ M_{AC} = \left( \frac{3 + 0}{2}, \frac{2 + (-3)}{2} \right) \][/tex]
[tex]\[ M_{AC} = \left( \frac{3}{2}, \frac{-1}{2} \right) \][/tex]
[tex]\[ M_{AC} = (1.5, -0.5) \][/tex]
### Step 2: Calculate the midpoint of diagonal [tex]\( BD \)[/tex]
The midpoint [tex]\( M_{BD} \)[/tex] of diagonal [tex]\( BD \)[/tex] is given by:
[tex]\[ M_{BD} = \left( \frac{x_2 + x_4}{2}, \frac{y_2 + y_4}{2} \right) \][/tex]
Substitute the coordinates of points [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ M_{BD} = \left( \frac{-1 + 4}{2}, \frac{1 + (-2)}{2} \right) \][/tex]
[tex]\[ M_{BD} = \left( \frac{3}{2}, \frac{-1}{2} \right) \][/tex]
[tex]\[ M_{BD} = (1.5, -0.5) \][/tex]
### Step 3: Intersection point of the diagonals
The intersection point of the diagonals of the square is where the two midpoints calculated above coincide. From our calculations, both [tex]\( M_{AC} \)[/tex] and [tex]\( M_{BD} \)[/tex] are the same:
[tex]\[ (1.5, -0.5) \][/tex]
Therefore, the coordinates of the point where the diagonals intersect are:
[tex]\[ \boxed{(1.5, -0.5)} \][/tex]
Answer:
[tex]\left( \frac{3}{2}, \frac{-1}{2} \right)[/tex]
Step-by-step explanation:
- To find the coordinates of the point where the diagonals of the square intersect, we can use the property that the diagonals of a square bisect each other and meet at the center of the square.
- The center of the square (the point of intersection of the diagonals) is the midpoint of the diagonals. To find this, we first need to find the midpoints of the diagonals using the given points.
Let's label the points of the square:
- A(3, 2)
- B(-1, 1)
- C(0, -3)
- D(4, -2)
- We can pair the opposite points to find the midpoints of the diagonals. We can use the midpoint formula, which states that the midpoint of a line segment connecting points [tex]\text (x_1, y_1) \:and (x_2, y_2) \:is\: given \:by:[/tex]
[tex]\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)[/tex]
- First, let's find the midpoint of diagonal AC:
[tex]\text{Midpoint of } AC = \left( \frac{3 + 0}{2}, \frac{2 + (-3)}{2} \right) = \left( \frac{3}{2}, \frac{-1}{2} \right)[/tex]
- Next, let's find the midpoint of diagonal BD:
[tex]\text{Midpoint of } BD = \left( \frac{-1 + 4}{2}, \frac{1 + (-2)}{2} \right) = \left( \frac{3}{2}, \frac{-1}{2} \right)[/tex]
- Since both midpoints are the same, we confirm that the diagonals intersect at the point [tex]\left( \frac{3}{2}, \frac{-1}{2} \right).[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.