Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which student's sequence represents a geometric sequence, we need to identify the sequences where the ratio between consecutive terms is constant. Let's look at each student's sequence in turn.
1. Andre's Sequence:
[tex]\[ -\frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
To be a geometric sequence, the ratio between each pair of consecutive terms must be constant.
2. Brenda's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \ldots \][/tex]
Again, we need to determine if the ratios are constant.
3. Camille's Sequence:
[tex]\[ \frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Checking for a constant ratio between terms.
4. Doug's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Verifying if each term is obtained by multiplying the previous term by a constant ratio.
After reviewing the sequences, it turns out that Doug's sequence is the one with a constant ratio between each pair of consecutive terms, which means Doug wrote a geometric sequence.
Conclusion:
Doug is the student who wrote a geometric sequence.
1. Andre's Sequence:
[tex]\[ -\frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
To be a geometric sequence, the ratio between each pair of consecutive terms must be constant.
2. Brenda's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \ldots \][/tex]
Again, we need to determine if the ratios are constant.
3. Camille's Sequence:
[tex]\[ \frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Checking for a constant ratio between terms.
4. Doug's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Verifying if each term is obtained by multiplying the previous term by a constant ratio.
After reviewing the sequences, it turns out that Doug's sequence is the one with a constant ratio between each pair of consecutive terms, which means Doug wrote a geometric sequence.
Conclusion:
Doug is the student who wrote a geometric sequence.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.