At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the length of [tex]\(\overline{DE}\)[/tex], given that the triangle was dilated by a scale factor of 2 and [tex]\(\overline{FD}\)[/tex] measures 6 units, you need to apply the property of dilation.
When a geometric figure is dilated by a scale factor, all lengths in the figure are multiplied by that scale factor.
Here’s a step-by-step explanation:
1. The original length of [tex]\(\overline{FD}\)[/tex] is given as 6 units.
2. The dilation process increases all lengths in the figure by the scale factor.
In this problem, the scale factor is 2.
3. To find the new length of [tex]\(\overline{DE}\)[/tex], multiply the original length [tex]\(\overline{FD}\)[/tex] by the scale factor:
[tex]\[ \overline{DE} = \overline{FD} \times \text{scale factor} \][/tex]
4. Substituting the given values:
[tex]\[ \overline{DE} = 6 \, \text{units} \times 2 \][/tex]
5. This calculation gives:
[tex]\[ \overline{DE} = 12 \, \text{units} \][/tex]
Therefore, the length of [tex]\(\overline{DE}\)[/tex] is [tex]\(12\)[/tex] units. The correct answer is:
[tex]\[ \boxed{\overline{DE}=12} \][/tex]
When a geometric figure is dilated by a scale factor, all lengths in the figure are multiplied by that scale factor.
Here’s a step-by-step explanation:
1. The original length of [tex]\(\overline{FD}\)[/tex] is given as 6 units.
2. The dilation process increases all lengths in the figure by the scale factor.
In this problem, the scale factor is 2.
3. To find the new length of [tex]\(\overline{DE}\)[/tex], multiply the original length [tex]\(\overline{FD}\)[/tex] by the scale factor:
[tex]\[ \overline{DE} = \overline{FD} \times \text{scale factor} \][/tex]
4. Substituting the given values:
[tex]\[ \overline{DE} = 6 \, \text{units} \times 2 \][/tex]
5. This calculation gives:
[tex]\[ \overline{DE} = 12 \, \text{units} \][/tex]
Therefore, the length of [tex]\(\overline{DE}\)[/tex] is [tex]\(12\)[/tex] units. The correct answer is:
[tex]\[ \boxed{\overline{DE}=12} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.