Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the volume of a sphere with a radius of [tex]\frac{3}{2}[/tex] feet?

The volume is [tex]\square \pi \, \text{ft}^3[/tex].


Sagot :

To find the volume of a sphere with a radius of [tex]\(\frac{3}{2}\)[/tex] feet, we follow the formula for the volume of a sphere:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

where:
- [tex]\( V \)[/tex] is the volume of the sphere,
- [tex]\( r \)[/tex] is the radius of the sphere,
- [tex]\( \pi \)[/tex] (pi) is a mathematical constant approximately equal to 3.14159.

Given the radius [tex]\( r = \frac{3}{2} \)[/tex] feet, we need to calculate:

1. First, calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \left(\frac{3}{2}\right)^3 = \frac{3^3}{2^3} = \frac{27}{8} \][/tex]

2. Next, multiply this value by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ \frac{4}{3} \times \frac{27}{8} = \frac{4 \cdot 27}{3 \cdot 8} = \frac{108}{24} = 4.5 \][/tex]

Therefore, the volume of the sphere is:
[tex]\[ V = 4.5 \pi \text{ ft}^3 \][/tex]

So, the volume of the sphere with a radius of [tex]\(\frac{3}{2}\)[/tex] feet is [tex]\( 4.5 \pi \, \text{ft}^3 \)[/tex].