Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the volume of a sphere, we use the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Given that the diameter of the sphere is [tex]\(5\)[/tex] meters, we can find the radius by dividing the diameter by [tex]\(2\)[/tex]:
[tex]\[ r = \frac{5}{2} = 2.5 \, \text{meters} \][/tex]
Now, we substitute the radius back into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (2.5)^3 \][/tex]
Calculating [tex]\(2.5\)[/tex] cubed:
[tex]\[ (2.5)^3 = 2.5 \times 2.5 \times 2.5 = 6.25 \times 2.5 = 15.625 \][/tex]
Thus, the volume formula becomes:
[tex]\[ V = \frac{4}{3} \pi \times 15.625 \][/tex]
Simplifying the calculation:
[tex]\[ V = \frac{4 \times 15.625}{3} \pi = \frac{62.5}{3} \pi \][/tex]
Thus, the volume of the sphere is:
[tex]\[ V = \frac{62.5}{3} \pi \, \text{m}^3 \][/tex]
Next, let's convert [tex]\(\frac{62.5}{3}\)[/tex] to a fraction in the simplest form to match with the given multiple choices:
The term [tex]\(62.5\)[/tex] as a fraction equals [tex]\(\frac{625}{10}\)[/tex]. So:
[tex]\[ V = \frac{625}{10} \times \frac{\pi}{3} = \frac{625}{30} \pi = \frac{125}{6} \pi \][/tex]
Thus, the correct answer matches with:
[tex]\[ V = \frac{125}{6} \pi \text{ m}^3 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ \boxed{\frac{125}{6} \pi \text{ m}^3} \][/tex]
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Given that the diameter of the sphere is [tex]\(5\)[/tex] meters, we can find the radius by dividing the diameter by [tex]\(2\)[/tex]:
[tex]\[ r = \frac{5}{2} = 2.5 \, \text{meters} \][/tex]
Now, we substitute the radius back into the volume formula:
[tex]\[ V = \frac{4}{3} \pi (2.5)^3 \][/tex]
Calculating [tex]\(2.5\)[/tex] cubed:
[tex]\[ (2.5)^3 = 2.5 \times 2.5 \times 2.5 = 6.25 \times 2.5 = 15.625 \][/tex]
Thus, the volume formula becomes:
[tex]\[ V = \frac{4}{3} \pi \times 15.625 \][/tex]
Simplifying the calculation:
[tex]\[ V = \frac{4 \times 15.625}{3} \pi = \frac{62.5}{3} \pi \][/tex]
Thus, the volume of the sphere is:
[tex]\[ V = \frac{62.5}{3} \pi \, \text{m}^3 \][/tex]
Next, let's convert [tex]\(\frac{62.5}{3}\)[/tex] to a fraction in the simplest form to match with the given multiple choices:
The term [tex]\(62.5\)[/tex] as a fraction equals [tex]\(\frac{625}{10}\)[/tex]. So:
[tex]\[ V = \frac{625}{10} \times \frac{\pi}{3} = \frac{625}{30} \pi = \frac{125}{6} \pi \][/tex]
Thus, the correct answer matches with:
[tex]\[ V = \frac{125}{6} \pi \text{ m}^3 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ \boxed{\frac{125}{6} \pi \text{ m}^3} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.