Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To graph the focus and the directrix of the parabola given by the equation [tex]\(x = -\frac{1}{8}(y-3)^2 + 1\)[/tex], you need to start by identifying the vertex form of a parabola and using the properties of the parabola. Here's a step-by-step solution:
### Step 1: Identify the vertex and orientation
The standard form of a parabola that opens horizontally is given by:
[tex]\[ x = a(y - k)^2 + h \][/tex]
Comparing this with the given equation [tex]\( x = -\frac{1}{8}(y - 3)^2 + 1 \)[/tex], we can see that:
- The vertex [tex]\((h, k)\)[/tex] is [tex]\( (1, 3) \)[/tex]
- Since [tex]\(a = -\frac{1}{8}\)[/tex], the parabola opens to the left.
### Step 2: Determine the value of [tex]\(4p\)[/tex]
In the standard form [tex]\(x = a(y-k)^2 + h\)[/tex], [tex]\(a\)[/tex] is related to the parameter [tex]\(p\)[/tex] by:
[tex]\[ a = \frac{1}{4p} \][/tex]
From the given parabola:
[tex]\[ -\frac{1}{8} = \frac{1}{4p} \][/tex]
Solving for [tex]\(p\)[/tex]:
[tex]\[ 4p = -8 \][/tex]
[tex]\[ p = -2 \][/tex]
Here, [tex]\( p \)[/tex] tells us the distance from the vertex to the focus and from the vertex to the directrix along the axis of symmetry.
### Step 3: Find the focus
The focus is [tex]\(p\)[/tex] units away from the vertex in the direction the parabola opens. Since the parabola opens to the left and [tex]\(p = -2\)[/tex]:
- The focus is located 2 units to the left of the vertex: [tex]\((1, 3)\)[/tex].
[tex]\[ \text{Focus} = (1 - 2, 3) = (-1, 3) \][/tex]
### Step 4: Find the directrix
The directrix is a vertical line that is [tex]\(p\)[/tex] units away from the vertex in the opposite direction from the focus. Since [tex]\(p = -2\)[/tex], the directrix is 2 units to the right of the vertex at [tex]\( x = 3 \)[/tex]:
[tex]\[ \text{Directrix:} \, x = 1 - (-2) = 3 \][/tex]
### Step 5: Plot the parabola, vertex, focus, and directrix
1. Vertex: Plot the vertex at [tex]\((1, 3)\)[/tex].
2. Focus: Plot the focus at [tex]\((-1, 3)\)[/tex].
3. Directrix: Draw the vertical line [tex]\( x = 3 \)[/tex].
4. Parabola: Sketch the parabola opening to the left with the vertex at [tex]\((1, 3)\)[/tex], passing through points that satisfy the equation [tex]\( x = -\frac{1}{8}(y - 3)^2 + 1 \)[/tex].
### Final Result:
- Vertex: [tex]\((1, 3)\)[/tex]
- Focus: [tex]\((-1, 3)\)[/tex]
- Directrix: [tex]\( x = 3 \)[/tex]
Make sure to label these points and line clearly on your graph to indicate the focus and the directrix of the parabola.
### Step 1: Identify the vertex and orientation
The standard form of a parabola that opens horizontally is given by:
[tex]\[ x = a(y - k)^2 + h \][/tex]
Comparing this with the given equation [tex]\( x = -\frac{1}{8}(y - 3)^2 + 1 \)[/tex], we can see that:
- The vertex [tex]\((h, k)\)[/tex] is [tex]\( (1, 3) \)[/tex]
- Since [tex]\(a = -\frac{1}{8}\)[/tex], the parabola opens to the left.
### Step 2: Determine the value of [tex]\(4p\)[/tex]
In the standard form [tex]\(x = a(y-k)^2 + h\)[/tex], [tex]\(a\)[/tex] is related to the parameter [tex]\(p\)[/tex] by:
[tex]\[ a = \frac{1}{4p} \][/tex]
From the given parabola:
[tex]\[ -\frac{1}{8} = \frac{1}{4p} \][/tex]
Solving for [tex]\(p\)[/tex]:
[tex]\[ 4p = -8 \][/tex]
[tex]\[ p = -2 \][/tex]
Here, [tex]\( p \)[/tex] tells us the distance from the vertex to the focus and from the vertex to the directrix along the axis of symmetry.
### Step 3: Find the focus
The focus is [tex]\(p\)[/tex] units away from the vertex in the direction the parabola opens. Since the parabola opens to the left and [tex]\(p = -2\)[/tex]:
- The focus is located 2 units to the left of the vertex: [tex]\((1, 3)\)[/tex].
[tex]\[ \text{Focus} = (1 - 2, 3) = (-1, 3) \][/tex]
### Step 4: Find the directrix
The directrix is a vertical line that is [tex]\(p\)[/tex] units away from the vertex in the opposite direction from the focus. Since [tex]\(p = -2\)[/tex], the directrix is 2 units to the right of the vertex at [tex]\( x = 3 \)[/tex]:
[tex]\[ \text{Directrix:} \, x = 1 - (-2) = 3 \][/tex]
### Step 5: Plot the parabola, vertex, focus, and directrix
1. Vertex: Plot the vertex at [tex]\((1, 3)\)[/tex].
2. Focus: Plot the focus at [tex]\((-1, 3)\)[/tex].
3. Directrix: Draw the vertical line [tex]\( x = 3 \)[/tex].
4. Parabola: Sketch the parabola opening to the left with the vertex at [tex]\((1, 3)\)[/tex], passing through points that satisfy the equation [tex]\( x = -\frac{1}{8}(y - 3)^2 + 1 \)[/tex].
### Final Result:
- Vertex: [tex]\((1, 3)\)[/tex]
- Focus: [tex]\((-1, 3)\)[/tex]
- Directrix: [tex]\( x = 3 \)[/tex]
Make sure to label these points and line clearly on your graph to indicate the focus and the directrix of the parabola.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.