Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex], we will follow these steps:
1. Identify the Vertex:
The function is in vertex form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex. By comparing [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex] with the general form:
- We can see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -3 \)[/tex].
Therefore, the vertex of the parabola is at [tex]\( (-4, -3) \)[/tex].
2. Choose a Second Point:
To graph the parabola accurately, we need another point on the graph. Let's choose [tex]\( x = -3 \)[/tex] as our second [tex]\( x \)[/tex]-value.
- Plugging [tex]\( x = -3 \)[/tex] into the function to find the corresponding [tex]\( y \)[/tex]-value:
[tex]\[ f(-3) = -2(-3 + 4)^2 - 3 = -2(1)^2 - 3 = -2 - 3 = -5 \][/tex]
Thus, the second point on the parabola is [tex]\( (-3, -5) \)[/tex].
3. Plot the Points and Draw the Parabola:
- Start by plotting the vertex at [tex]\( (-4, -3) \)[/tex].
- Next, plot the second point at [tex]\( (-3, -5) \)[/tex].
- Draw a smooth curve through these points, making sure it opens downwards (since the coefficient of the squared term, [tex]\(-2\)[/tex], is negative), forming a parabola.
By plotting these points, you can accurately graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex].
1. Identify the Vertex:
The function is in vertex form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex. By comparing [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex] with the general form:
- We can see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -3 \)[/tex].
Therefore, the vertex of the parabola is at [tex]\( (-4, -3) \)[/tex].
2. Choose a Second Point:
To graph the parabola accurately, we need another point on the graph. Let's choose [tex]\( x = -3 \)[/tex] as our second [tex]\( x \)[/tex]-value.
- Plugging [tex]\( x = -3 \)[/tex] into the function to find the corresponding [tex]\( y \)[/tex]-value:
[tex]\[ f(-3) = -2(-3 + 4)^2 - 3 = -2(1)^2 - 3 = -2 - 3 = -5 \][/tex]
Thus, the second point on the parabola is [tex]\( (-3, -5) \)[/tex].
3. Plot the Points and Draw the Parabola:
- Start by plotting the vertex at [tex]\( (-4, -3) \)[/tex].
- Next, plot the second point at [tex]\( (-3, -5) \)[/tex].
- Draw a smooth curve through these points, making sure it opens downwards (since the coefficient of the squared term, [tex]\(-2\)[/tex], is negative), forming a parabola.
By plotting these points, you can accurately graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.