Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's focus on solving question number 47 in detail.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.