Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex], we follow these steps:
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.